

Table of content

1. About this book

2. Hello world

3. Building an HTML printer library

3.1. Flexible HTML content (functions)

3.2. Adding type signatures

3.3. Embedded Domain Specific Languages

3.4. Safer HTML construction with types

3.5. Preventing incorrect use with modules

3.6. Escaping characters

3.7. Exposing internal functionality (Internal modules)

3.8. Exercises

3.9. Summary

4. Custom markup language

4.1. Representing the markup language as a Haskell data type

4.2. Parsing markup part 01 (Recursion)

4.3. Displaying the parsing results (type classes)

4.4. Parsing markup part 02 (Pattern matching)

5. Gluing things together

5.1. Converting Markup to HTML

5.2. Working with IO

5.3. Defining a project description

5.4. Fancy options parsing

6. Handling errors and multiple files

6.1. Handling errors with Either

6.2. Either with IO?

6.3. Exceptions

6.4. Let's code already!

6.5. Summary

7. Passing an environment

8. Writing tests

9. Generating documentation

10. Recap

Where to go next

Frequently asked questions

https://learn-haskell.blog/print.html#table-of-content
https://learn-haskell.blog/print.html#table-of-content
https://learn-haskell.blog/01-about.html
https://learn-haskell.blog/01-about.html
https://learn-haskell.blog/01-about.html
https://learn-haskell.blog/01-about.html
https://learn-haskell.blog/02-hello.html
https://learn-haskell.blog/02-hello.html
https://learn-haskell.blog/02-hello.html
https://learn-haskell.blog/02-hello.html
https://learn-haskell.blog/03-html_printer.html
https://learn-haskell.blog/03-html_printer.html
https://learn-haskell.blog/03-html_printer.html
https://learn-haskell.blog/03-html_printer.html
https://learn-haskell.blog/03-html/01-html_content.html
https://learn-haskell.blog/03-html/01-html_content.html
https://learn-haskell.blog/03-html/01-html_content.html
https://learn-haskell.blog/03-html/01-html_content.html
https://learn-haskell.blog/03-html/02-type_signatures.html
https://learn-haskell.blog/03-html/02-type_signatures.html
https://learn-haskell.blog/03-html/02-type_signatures.html
https://learn-haskell.blog/03-html/02-type_signatures.html
https://learn-haskell.blog/03-html/03-edsls.html
https://learn-haskell.blog/03-html/03-edsls.html
https://learn-haskell.blog/03-html/03-edsls.html
https://learn-haskell.blog/03-html/03-edsls.html
https://learn-haskell.blog/03-html/04-safer_construction.html
https://learn-haskell.blog/03-html/04-safer_construction.html
https://learn-haskell.blog/03-html/04-safer_construction.html
https://learn-haskell.blog/03-html/04-safer_construction.html
https://learn-haskell.blog/03-html/05-modules.html
https://learn-haskell.blog/03-html/05-modules.html
https://learn-haskell.blog/03-html/05-modules.html
https://learn-haskell.blog/03-html/05-modules.html
https://learn-haskell.blog/03-html/06-escaping_characters.html
https://learn-haskell.blog/03-html/06-escaping_characters.html
https://learn-haskell.blog/03-html/06-escaping_characters.html
https://learn-haskell.blog/03-html/06-escaping_characters.html
https://learn-haskell.blog/03-html/07-internal_modules.html
https://learn-haskell.blog/03-html/07-internal_modules.html
https://learn-haskell.blog/03-html/07-internal_modules.html
https://learn-haskell.blog/03-html/07-internal_modules.html
https://learn-haskell.blog/03-html/08-exercises.html
https://learn-haskell.blog/03-html/08-exercises.html
https://learn-haskell.blog/03-html/08-exercises.html
https://learn-haskell.blog/03-html/08-exercises.html
https://learn-haskell.blog/03-html/09-summary.html
https://learn-haskell.blog/03-html/09-summary.html
https://learn-haskell.blog/03-html/09-summary.html
https://learn-haskell.blog/03-html/09-summary.html
https://learn-haskell.blog/04-markup.html
https://learn-haskell.blog/04-markup.html
https://learn-haskell.blog/04-markup.html
https://learn-haskell.blog/04-markup.html
https://learn-haskell.blog/04-markup/01-data_type.html
https://learn-haskell.blog/04-markup/01-data_type.html
https://learn-haskell.blog/04-markup/01-data_type.html
https://learn-haskell.blog/04-markup/01-data_type.html
https://learn-haskell.blog/04-markup/02-parsing_01.html
https://learn-haskell.blog/04-markup/02-parsing_01.html
https://learn-haskell.blog/04-markup/02-parsing_01.html
https://learn-haskell.blog/04-markup/02-parsing_01.html
https://learn-haskell.blog/04-markup/03-displaying_results.html
https://learn-haskell.blog/04-markup/03-displaying_results.html
https://learn-haskell.blog/04-markup/03-displaying_results.html
https://learn-haskell.blog/04-markup/03-displaying_results.html
https://learn-haskell.blog/04-markup/04-parsing_02.html
https://learn-haskell.blog/04-markup/04-parsing_02.html
https://learn-haskell.blog/04-markup/04-parsing_02.html
https://learn-haskell.blog/04-markup/04-parsing_02.html
https://learn-haskell.blog/05-glue.html
https://learn-haskell.blog/05-glue.html
https://learn-haskell.blog/05-glue.html
https://learn-haskell.blog/05-glue.html
https://learn-haskell.blog/05-glue/01-markup_to_html.html
https://learn-haskell.blog/05-glue/01-markup_to_html.html
https://learn-haskell.blog/05-glue/01-markup_to_html.html
https://learn-haskell.blog/05-glue/01-markup_to_html.html
https://learn-haskell.blog/05-glue/02-io.html
https://learn-haskell.blog/05-glue/02-io.html
https://learn-haskell.blog/05-glue/02-io.html
https://learn-haskell.blog/05-glue/02-io.html
https://learn-haskell.blog/05-glue/03-project.html
https://learn-haskell.blog/05-glue/03-project.html
https://learn-haskell.blog/05-glue/03-project.html
https://learn-haskell.blog/05-glue/03-project.html
https://learn-haskell.blog/05-glue/04-optparse.html
https://learn-haskell.blog/05-glue/04-optparse.html
https://learn-haskell.blog/05-glue/04-optparse.html
https://learn-haskell.blog/05-glue/04-optparse.html
https://learn-haskell.blog/06-errors_and_files.html
https://learn-haskell.blog/06-errors_and_files.html
https://learn-haskell.blog/06-errors_and_files.html
https://learn-haskell.blog/06-errors_and_files.html
https://learn-haskell.blog/06-errors_and_files/01-either.html
https://learn-haskell.blog/06-errors_and_files/01-either.html
https://learn-haskell.blog/06-errors_and_files/01-either.html
https://learn-haskell.blog/06-errors_and_files/01-either.html
https://learn-haskell.blog/06-errors_and_files/02-except.html
https://learn-haskell.blog/06-errors_and_files/02-except.html
https://learn-haskell.blog/06-errors_and_files/02-except.html
https://learn-haskell.blog/06-errors_and_files/02-except.html
https://learn-haskell.blog/06-errors_and_files/03-exceptions.html
https://learn-haskell.blog/06-errors_and_files/03-exceptions.html
https://learn-haskell.blog/06-errors_and_files/03-exceptions.html
https://learn-haskell.blog/06-errors_and_files/03-exceptions.html
https://learn-haskell.blog/06-errors_and_files/04-implementation.html
https://learn-haskell.blog/06-errors_and_files/04-implementation.html
https://learn-haskell.blog/06-errors_and_files/04-implementation.html
https://learn-haskell.blog/06-errors_and_files/04-implementation.html
https://learn-haskell.blog/06-errors_and_files/05-summary.html
https://learn-haskell.blog/06-errors_and_files/05-summary.html
https://learn-haskell.blog/06-errors_and_files/05-summary.html
https://learn-haskell.blog/06-errors_and_files/05-summary.html
https://learn-haskell.blog/07-environment.html
https://learn-haskell.blog/07-environment.html
https://learn-haskell.blog/07-environment.html
https://learn-haskell.blog/07-environment.html
https://learn-haskell.blog/08-testing.html
https://learn-haskell.blog/08-testing.html
https://learn-haskell.blog/08-testing.html
https://learn-haskell.blog/08-testing.html
https://learn-haskell.blog/09-documentation.html
https://learn-haskell.blog/09-documentation.html
https://learn-haskell.blog/09-documentation.html
https://learn-haskell.blog/09-documentation.html
https://learn-haskell.blog/10-recap.html
https://learn-haskell.blog/10-recap.html
https://learn-haskell.blog/10-recap.html
https://learn-haskell.blog/10-recap.html
https://learn-haskell.blog/11-next.html
https://learn-haskell.blog/11-next.html
https://learn-haskell.blog/12-faq.html
https://learn-haskell.blog/12-faq.html

About this book

In this book, we will implement a simple static blog generator in Haskell, converting documents

written in our own custom markup language to HTML.

We will:

1. Implement a tiny HTML printer library

2. Define and parse our own custom markup language

3. Read files and glue things together

4. Add command line arguments parsing

5. Write tests and documentation

In each chapter of the book, we will focus on a particular task we wish to achieve, and throughout

the chapter, learn just enough Haskell to complete the task.

Why should you read this book?

There are many Haskell tutorials, guides, and books out there. Why read this one?

Pros

There are probably more, but here are a few possible pros:

• It is relatively short - most Haskell books are hundreds of pages long. This book (when

exported to PDF) is roughly 200 pages long.

• It is project oriented. Many Haskell books teach Haskell by teaching the underlying concepts

and features in a neat progression. In this book, we build a Haskell program and learn Haskell

on the way. This will be a pro to some and a con to others.

• It touches on important topics such as design patterns, testing, and documentation.

• It has many exercises as well as solutions to those exercises.

• It's online, which means corrections are easy to make.

• It's free.

Cons

There are probably more, but here are a few possible cons:

• It may lack depth - many, much longer Haskell tutorials are long because they go deeper into

the nuts and bolts of each feature, and I tried to keep this book relatively short.

• It may not cover as many features or techniques as other tutorials - we try to cover features

as they pop up in our implementation, but we will probably miss features that aren't as

important for our tasks, while other resources may try to cover many different use cases.

• It does not have a technical editor, though it has seen quite a bit of editing.

https://learn-haskell.blog/print.html#about-this-book
https://learn-haskell.blog/print.html#about-this-book
https://learn-haskell.blog/print.html#why-should-you-read-this-book
https://learn-haskell.blog/print.html#why-should-you-read-this-book
https://learn-haskell.blog/print.html#pros
https://learn-haskell.blog/print.html#pros
https://learn-haskell.blog/print.html#cons
https://learn-haskell.blog/print.html#cons

Other learning resources

The haskell.org/documentation page lists many tutorials, books, guides, and courses.

Who am I?

I'm gilmi.

Discussions

Do you want to discuss the book? Maybe ask a question? Try the book's official discussion board!

https://learn-haskell.blog/print.html#other-learning-resources
https://learn-haskell.blog/print.html#other-learning-resources
https://www.haskell.org/documentation/
https://www.haskell.org/documentation/
https://learn-haskell.blog/print.html#who-am-i
https://learn-haskell.blog/print.html#who-am-i
https://gilmi.me/
https://gilmi.me/
https://gilmi.me/
https://learn-haskell.blog/print.html#discussions
https://learn-haskell.blog/print.html#discussions
https://github.com/soupi/learn-haskell-blog-generator/discussions
https://github.com/soupi/learn-haskell-blog-generator/discussions

Hello, world!

In this chapter, we will create a simple HTML "hello world" program and use the Haskell toolchain to

compile and run it.

If you haven't installed a Haskell toolchain yet, visit haskell.org/downloads for instructions on

how to download and install a Haskell toolchain.

A Haskell source file

A Haskell source file is composed of definitions.

The most common type of definition has the following form:

Note that:

1. Names must start with a lowercase letter

2. We cannot use the same name more than once in a file

A source file containing a definition of the name main can be treated as an executable, and the

expression main is bound to is the entry point to the program.

Let's create a new Haskell source file called hello.hs and write the following line there:

We've defined a new name, main , and bound it to the expression putStrLn "<html><body>Hello,

world!</body></html>" .

the body of main means calling the function putStrLn with the string "<html><body>Hello,

world!</body></html>" as input. putStrLn takes a single string as input and prints that string to

the standard output.

Note: we don't need parenthesis to pass arguments to functions in Haskell.

Running this program will result in the following text printed on the screen:

Note that we cannot just write putStrLn "<html><body>Hello, world!</body></html>" without the

main = part, because it is not a definition. This is something that is allowed in languages such as

Python and OCaml, but not in Haskell or, for example, C.

<name> = <expression>

main = putStrLn "<html><body>Hello, world!</body></html>"

<html><body>Hello, world!</body></html>

https://learn-haskell.blog/print.html#hello-world
https://learn-haskell.blog/print.html#hello-world
https://haskell.org/downloads
https://haskell.org/downloads
https://learn-haskell.blog/print.html#a-haskell-source-file
https://learn-haskell.blog/print.html#a-haskell-source-file

Compiling programs

To run this little program, we can compile it using the command line program ghc :

Invoking ghc with hello.hs will create the following artifact files:

1. hello.o - Object file

2. hello.hi - Haskell interface file

3. hello - A native executable file

And after the compilation, we can run the hello executable:

Interpreting programs

Alternatively, we can skip the compilation and creation of artifact files phase and run the source file

directly using the command line program runghc :

We can also redirect the output of the program to a file and then open it in Firefox.

This command should open Firefox and display a web page with Hello, world! written in it.

I recommend using runghc with this tutorial. While compiling produces significantly faster

programs, intepreting programs provides us with faster feedback while we are developing and

making frequent changes.

More bindings

We can define the HTML string passed to putStrLn in a new name instead of passing it directly to

putStrLn . Change the content of file hello.hs we defined above to:

Note: the order in which we declare the bindings does not matter.

> ghc hello.hs
[1 of 1] Compiling Main (hello.hs, hello.o)
Linking hello ...

> ./hello
<html><body>Hello, world!</body></html>

> runghc hello.hs
<html><body>Hello, world!</body></html>

> runghc hello.hs > hello.html
> firefox hello.html

main = putStrLn myhtml

myhtml = "<html><body>Hello, world!</body></html>"

https://learn-haskell.blog/print.html#compiling-programs
https://learn-haskell.blog/print.html#compiling-programs
https://learn-haskell.blog/print.html#interpreting-programs
https://learn-haskell.blog/print.html#interpreting-programs
https://learn-haskell.blog/print.html#more-bindings
https://learn-haskell.blog/print.html#more-bindings

Building an HTML printer library

In this part, we'll explore a few basic building blocks in Haskell, including functions, types, and

modules, while building a small HTML printer library with which we will later construct HTML pages

from our markup blog posts.

If you're not familiar with HTML and would like a quick tutorial before diving in, MDN's Getting

started with HTML is a good overview of the subject.

https://learn-haskell.blog/print.html#building-an-html-printer-library
https://learn-haskell.blog/print.html#building-an-html-printer-library
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started
https://developer.mozilla.org/en-US/docs/Learn/HTML/Introduction_to_HTML/Getting_started

Flexible HTML content (functions)

We'd like to be able to write different HTML pages without having to write the whole structure of

HTML and body tags over and over again. We can do that with functions.

To define a function, we create a definition as we saw previously and add the argument names after

the name and before the equals sign (=). So a function definition has the following form:

The argument names will be available in scope on the right side of the equals sign (in the

<expression>), and the function name will be <name> .

We'll define a function that takes a string, which is the content of the page, and wraps it in the

relevant html and body tags by concatenating them before and after the content. We use the

operator <> to concatenate two strings.

This function, wrapHtml , takes one argument named content and returns a string that prefixes

<html><body> before the content and appends </body></html> after it. Note that it is common to

use camelCase in Haskell for names.

Now we can adjust our myhtml definition from the previous chapter:

Again, notice that we don't need parenthesis when calling functions. Function calls have the form:

However, if we wanted to substitute myhtml with the expression myhtml is bound to in main =

putStrLn myhtml , we would have to wrap the expression in parenthesis:

If we accidentally write this instead:

we'll get an error from GHC stating that putStrLn is applied to two arguments, but it only takes one.

This is because the above is of the form <name> <arg1> <arg2> in which, as we defined earlier,

<arg1> and <arg2> are arguments to <name> .

Using parenthesis, we can group the expressions together in the correct order.

<name> <arg1> <arg2> ... <argN> = <expression>

wrapHtml content = "<html><body>" <> content <> "</body></html>"

myhtml = wrapHtml "Hello, world!"

<name> <arg1> <arg2> ... <argN>

main = putStrLn (wrapHtml "Hello, world!")

main = putStrLn wrapHtml "Hello, world!"

https://learn-haskell.blog/print.html#flexible-html-content-functions
https://learn-haskell.blog/print.html#flexible-html-content-functions

An aside about operator precedence and fixity

operators (like <>) are infix functions that take two arguments - one from each side.

When there are multiple operators in the same expression without parenthesis, the operator

fixity (left or right) and precedence (a number between 0 and 10) determine which operator

binds more tightly.

In our case, <> has right fixity, so Haskell adds an invisible parenthesis on the right side of <> .

So, for example:

is viewed by Haskell as:

For an example of precedence, in the expression 1 + 2 * 3 , the operator + has precedence

6, and the operator * has precedence 7, so we give precedence to * over + . Haskell will view

this expression as:

You might run into errors when mixing different operators with the same precedence but

different fixity, because Haskell won't understand how to group these expressions. In that case,

we can solve the problem by adding parenthesis explicitly.

Exercises:

1. Separate the functionality of wrapHtml into two functions:

1. One that wraps content in html tag

2. one that wraps content in a body tag

Name the new functions html_ and body_ .

2. Change myhtml to use these two functions.

3. Add another two similar functions for the tags <head> and <title> and name them head_

and title_ .

4. Create a new function, makeHtml , which takes two strings as input:

1. One string for the title

2. One string for the body content

And construct an HTML string using the functions implemented in the previous exercises.

The output for:

"<html><body>" <> content <> "</body></html>"

"<html><body>" <> (content <> "</body></html>")

1 + (2 * 3)

makeHtml "My page title" "My page content"

https://learn-haskell.blog/print.html#an-aside-about-operator-precedence-and-fixity
https://learn-haskell.blog/print.html#an-aside-about-operator-precedence-and-fixity

should be:

5. Use makeHtml in myhtml instead of using html_ and body_ directly

Indentation

You might ask how does Haskell know a definition is complete? The answer is: Haskell uses

indentation to know when things should be grouped together.

Indentation in Haskell can be a bit tricky, but in general: code that is supposed to be part of some

expression should be indented further than the beginning of that expression.

We know two definitions are separate because the second one is not indented further than the first

one.

Indentation tips

1. Choose a specific amount of spaces for indentation (2 spaces, 4 spaces, etc.) and stick to it.

Always use spaces over tabs.

2. Do not indent more than once at any given time.

3. When in doubt, drop the line as needed and indent once.

Here are a few examples:

or:

Avoid the following styles, which use more than one indentation step, or completely disregard

indentation steps:

<html><head><title>My page title</title></head><body>My page content</body></html>

main =
 putStrLn "Hello, world!"

main =
 putStrLn
 (wrapHtml "Hello, world!")

main = putStrLn
 (wrapHtml "Hello, world!")

main = putStrLn
 (wrapHtml "Hello, world!")

https://learn-haskell.blog/print.html#indentation
https://learn-haskell.blog/print.html#indentation
https://learn-haskell.blog/print.html#indentation-tips
https://learn-haskell.blog/print.html#indentation-tips

Adding type signatures

Haskell is a statically typed programming language. That means that every expression has a type,

and we check that the types are valid with regards to each other before running the program. If we

discover that they are not valid, an error message will be printed, and the program will not run.

An example of a type error would be if we'd pass 3 arguments to a function that takes only 2, or pass

a number instead of a string.

Haskell is also type inferred, so we don't need to specify the type of expressions - Haskell can infer

from the context of the expression what its type should be, and that's what we have done until now.

However, specifying types is useful - it adds a layer of documentation for you or others that will

look at the code later, and it helps verify to some degree that what was intended (with the type

signature) is what was written (with the expression). It is generally recommended to annotate all top-

level definitions with type signatures.

We use a double-colon (::) to specify the type of names. We usually write it right above the

definition of the name itself.

Here are a few examples of types we can write:

• Int - The type of integer numbers

• String - The type of strings

• Bool - The type of booleans

• () - The type of the expression () , also called unit

• a -> b - The type of a function from an expression of type a to an expression of type b

• IO () - The type of an expression that represents an IO subroutine that returns ()

Let's specify the type of title_ :

We can see in the code that the type of title_ is a function that takes a String and returns a

String .

Let's also specify the type of makeHtml :

Previously, we thought about makeHtml as a function that takes two strings and returns a string.

But actually, all functions in Haskell take exactly one argument as input and return exactly one

value as output. It's just convenient to refer to functions like makeHtml as functions with multiple

inputs.

In our case, makeHtml is a function that takes one string argument and returns a function. The

function it returns takes a string argument as well and finally returns a string.

The magic here is that -> is right-associative. This means that when we write:

Haskell parses it as:

title_ :: String -> String

makeHtml :: String -> String -> String

makeHtml :: String -> String -> String

https://learn-haskell.blog/print.html#adding-type-signatures
https://learn-haskell.blog/print.html#adding-type-signatures

Consequently, the expression makeHtml "My title" is also a function! One that takes a string (the

content, the second argument of makeHtml) and returns the expected HTML string with "My title" in

the title.

This is called partial application.

To illustrate, let's define html_ and body_ in a different way by defining a new function, el .

el is a function that takes a tag and content, and wraps the content with the tag.

We can now implement html_ and body_ by partially applying el and only provide the tag.

Note that we didn't need to add the argument on the left side of equals sign because Haskell

functions are "first class" - they behave exactly like values of primitive types like Int or String . We

can name a function like any other value, put it in data structures, pass it to functions, and so on!

The way Haskell treats names is very similar to copy-paste. Anywhere you see html_ in the code,

you can replace it with el "html" . They are the same (this is what the equals signs say, right? That

the two sides are the same). This property of being able to substitute the two sides of the equals sign

with one another is called referential transparency. And it is pretty unique to Haskell (and a few

similar languages such as PureScript and Elm)! We'll talk more about referential transparency in a

later chapter.

Anonymous/lambda functions

To further drive the point that Haskell functions are first class and all functions take exactly one

argument, I'll mention that the syntax we've been using up until now to define function is just

syntactic sugar! We can also define anonymous functions - functions without a name, anywhere

we'd like. Anonymous functions are also known as lambda functions as a tribute to the formal

mathematical system which is at the heart of all functional programming languages - the lambda

calculus.

We can create an anonymous function anywhere we'd expect an expression, such as "hello" , using

the following syntax:

This little \ (which bears some resemblance to the lowercase Greek letter lambda 'λ') marks the

head of the lambda function, and the arrow (->) marks the beginning of the function's body. We

can even chain lambda functions, making them "multiple argument functions" by defining another

makeHtml :: String -> (String -> String)

el :: String -> String -> String
el tag content =
"<" <> tag <> ">" <> content <> "</" <> tag <> ">"

html_ :: String -> String
html_ = el "html"

body_ :: String -> String
body_ = el "body"

\<argument> -> <expression>

https://learn-haskell.blog/print.html#anonymouslambda-functions
https://learn-haskell.blog/print.html#anonymouslambda-functions

lambda in the body of another, like this:

As before, we evaluate functions by substituting the function argument with the applied value. In the

example above, we substitute num1 with 1 and get (\num2 -> 1 + num2) 2 . Then substitute num2

with 2 and get 1 + 2 . We'll talk more about substitution later.

So, when we write:

Haskell actually translates this under the hood to:

Hopefully, this form makes it a bit clearer why Haskell functions always take one argument, even

when we have syntactic sugar that might suggest otherwise.

I'll mention one more syntactic sugar for anonymous functions: We don't actually have to write

multiple argument anonymous functions this way, we can write:

to save us some trouble. For example:

But it's worth remembering what they are under the hood.

We won't be needing anonymous/lambda functions at this point, but we'll discuss them later and

see where they can be useful.

Exercises:

1. Add types for all of the functions we created until now

2. Change the implementation of the HTML functions we built to use el instead

3. Add a couple more functions for defining paragraphs and headings:

1. p_ which uses the tag <p> for paragraphs

2. h1_ which uses the tag <h1> for headings

4. Replace our Hello, world! string with richer content, use h1_ and p_ . We can append HTML

strings created by h1_ and p_ using the append operator <> .

Bonus: rewrite a couple of functions using lambda functions, just for fun!

three = (\num1 -> \num2 -> num1 + num2) 1 2

el :: String -> String -> String
el tag content =
"<" <> tag <> ">" <> content <> "</" <> tag <> ">"

el :: String -> (String -> String)
el = \tag -> \content ->
"<" <> tag <> ">" <> content <> "</" <> tag <> ">"

\<arg1> <arg2> ... <argN> -> <expression>

three = (\num1 num2 -> num1 + num2) 1 2

Embedded Domain-Specific Languages

Right off the bat, we run into a common pattern in Haskell: creating Embedded Domain-Specific

Languages (EDSLs for short).

Domain-specific languages (DSLs) are specialized programming languages that are tailored to

specific domains, in contrast to general-purpose languages, which try to work well in many domains.

A few examples of DSLs are:

• make - for defining build systems

• DOT - for defining graphs

• Sed - for defining text transformations

• CSS - for defining styling

• HTML - for defining web pages

An embedded domain-specific language is a little language that is embedded inside another

programming language, making a program written in the EDSL a valid program in the language it

was written in.

The little HTML library we've been writing can be considered an EDSL. It is used specifically for

building web pages (by returning HTML strings), and is valid Haskell code!

In Haskell, we frequently create and use EDSLs to express domain-specific logic. We have EDSLs for

concurrency, command-line options parsing, JSON and HTML, creating build systems, writing tests,

and many more.

Specialized languages are useful because they can solve specific problems in a concise (and often

safe) way, and by embedding, we get to use the full power of the host language for our domain logic,

including syntax highlighting and various tools available for the language.

The drawback of embedding domain-specific languages is that we have to adhere the rules of the

programming language we embed in, such as syntactic and semantic rules.

Some languages alleviate this drawback by providing meta-programming capabilities in the form of

macros or other features to extend the language. And while Haskell does provide such capabilities

as well, it is also expressive and concise enough that many EDSLs do not need them.

Instead, many Haskell EDSLs use a pattern called the combinator pattern: They define primitives and

combinators - primitives are basic building blocks of the language, and combinators are functions

that combine primitives into more complex structures.

In our HTML EDSL, our primitives are functions such as html_ and title_ that can be used to

create a single HTML node, and we pass other constructed nodes as input to these functions, and

combine them into a more complex structure with the append function <> .

There are still a few tricks we can use to make our HTML EDSL better:

1. We can use Haskell's type system to make sure we only construct valid HTML, so for example,

we don't create a <title> node without a <head> node or have user content that can include

unescaped special characters, and throw a type error when the user tries to do something

invalid.

2. Our HTML EDSL can move to its own module so it can be reused in multiple modules

https://learn-haskell.blog/print.html#embedded-domain-specific-languages
https://learn-haskell.blog/print.html#embedded-domain-specific-languages

In the next few sections, we'll take a look at how to define our own types and how to work with

modules to make it harder to make errors, and a little bit about linked lists in Haskell.

Safer HTML construction with types

In this section, we'll learn how to create our own distinguished types for HTML, and how they can

help us avoid the invalid construction of HTML strings.

There are a few ways of defining new types in Haskell; in this section, we are going to meet two

ways: newtype and type .

newtype

A newtype declaration is a way to define a new, distinct type for an existing set of values. This is

useful when we want to reuse existing values but give them a different meaning and ensure we can't

mix the two. For example, we can represent seconds, minutes, grams, and yens using integer values,

but we don't want to mix grams and seconds accidentally.

In our case, we want to represent structured HTML using textual values, but distinguish them from

everyday strings that are not valid HTML.

A newtype declaration looks like this:

For example, in our case, we can define a distinct type for Html like this:

The first Html , to the left of the equals sign, lives in the types name space, meaning that you will only

see that name to the right of a double-colon sign (::).

The second Html lives in the expressions (or terms/values) namespace, meaning that you will see it

where you expect expressions (we'll touch where exactly that can be in a moment).

The two names, <type-name> and <constructor> , do not have to be the same, but they often are.

And note that both have to start with a capital letter.

The right-hand side of the newtype declaration describes the shape of a value of that type. In our

case, we expect a value of type Html to have the constructor Html and then an expression of type

string, for example: Html "hello" or Html ("hello " <> "world") .

You can think of the constructor as a function that takes the argument and returns something of our

new type:

Note: We cannot use an expression of type Html the same way we'd use a String . So "hello "

<> Html "world" would fail at type checking.

This is useful when we want encapsulation. We can define and use existing representation and

functions for our underlying type, but not mix them with other unrelated (to our domain) types.

Similar as meters and feet can both be numbers, but we don't want to accidentally add feet to

newtype <type-name> = <constructor> <existing-type>

newtype Html = Html String

Html :: String -> Html

https://learn-haskell.blog/print.html#safer-html-construction-with-types
https://learn-haskell.blog/print.html#safer-html-construction-with-types
https://learn-haskell.blog/print.html#newtype
https://learn-haskell.blog/print.html#newtype

meters without any conversion.

For now, let's create a couple of types for our use case. We want two separate types to represent:

1. A complete Html document

2. A type for html structures such as headings and paragraphs that can go inside the tag

We want them to be distinct because we don't want to mix them.

Using newtypes

To use the underlying type that the newtype wraps, we first need to extract it out of the type. We do

this using pattern matching.

Pattern matching can be used in two ways, in case-expressions and in function definitions.

1. case expressions are kind of beefed up switch expressions and look like this:

The <expression> is the thing we want to unpack, and the pattern is its concrete shape. For

example, if we wanted to extract the String out of the type Structure we defined in the

exercise above, we do:

This way, we can extract the String out of Structure and return it.

In later chapters we'll introduce data declarations (which are kind of a struct + enum

chimera), where we can define multiple constructors to a type. Then the multiple patterns

of a case expression will make more sense.

2. Alternatively, when declaring a function, we can also use pattern matching on the arguments:

For example:

case <expression> of

 <pattern> -> <expression>

 ...

 <pattern> -> <expression>

getStructureString :: Structure -> String

getStructureString struct =

case struct of

Structure str -> str

func <pattern> = <expression>

getStructureString :: Structure -> String

getStructureString (Structure str) = str

https://learn-haskell.blog/print.html#using-newtypes
https://learn-haskell.blog/print.html#using-newtypes

Using the types we created, we can change the HTML functions we've defined before, namely

html_ , body_ , p_ , etc., to operate on these types instead of String s.

But first, let's meet another operator that will make our code more concise.

One very cool thing about newtype is that wrapping and extracting expressions doesn't actually

have a performance cost! The compiler knows how to remove any wrapping and extraction of the

newtype constructor and use the underlying type.

The new type and the constructor we defined are only there to help us distinguish between the type

we created and the underlying type when we write our code, they are not needed when the code is

running.

newtype s provide us with type safety with no performance penalty!

Chaining functions

Another interesting and extremely common operator (which is a regular library function in Haskell)

is . (pronounced compose). This operator was made to look like the composition operator you may

know from math (∘).

Let's look at its type and implementation:

Compose takes 3 arguments: two functions (named f and g here) and a third argument named x .

It then passes the argument x to the second function g and calls the first function f with the

result of g x .

Note that g takes as input something of the type a and returns something of the type b , and f

takes something of the type b and returns something of the type c .

Another important thing to note is that types that start with a lowercase letter are type variables.

Think of them as similar to regular variables. Just like content could be any string, like "hello" or

"world" , a type variable can be any type: Bool , String , String -> String , etc. This ability is

called parametric polymorphism (other languages often call this generics).

The catch is that type variables must match in a signature, so if for example, we write a function with

the type signature a -> a , the input type and the return type must match, but it could be any type -

we cannot know what it is. So the only way to implement a function with that signature is:

id , short for the identity function, returns the exact value it received. If we tried any other way, for

example, returning some made-up value like "hello" , or trying to use x as a value of a type we

know, like writing x + x , the type checker will complain.

Also, remember that -> is right-associative? This signature is equivalent to:

(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g x = f (g x)

id :: a -> a
id x = x

https://learn-haskell.blog/print.html#chaining-functions
https://learn-haskell.blog/print.html#chaining-functions

Doesn't it look like a function that takes two functions and returns a third function that is the

composition of the two?

We can now use this operator to change our HTML functions. Let's start with one example: p_ .

Before, we had:

And now, we can write:

The function p_ will take an arbitrary String , which is the content of the paragraph we wish to

create, wrap it in <p> and </p> tags, and then wrap it in the Structure constructor to produce the

output type Structure (remember: newtype constructors can be used as functions!).

Let's take a deeper look at the types:

• Structure :: String -> Structure

• el "p" :: String -> String

• (.) :: (b -> c) -> (a -> b) -> (a -> c)

• Structure . el "p" :: String -> Structure

Let's see why the expression Structure . el "p" type checks, and why its type is String ->

Structure .

Type checking with pen and paper

If we want to figure out if and how exactly an expression type-checks, we can do that rather

systematically. Let's look at an example where we try and type-check this expression:

First, we write down the type of the outer-most function. In our case, this is the operator . which

has the type:

After that, we can try to match the type of the arguments we apply to this function with the type of

the arguments from the type signature.

In this case, we try to apply two arguments to . :

1. Structure :: String -> Structure

2. el "p" :: String -> String

And luckily, . expects two arguments with the types:

(.) :: (b -> c) -> (a -> b) -> (a -> c)

p_ :: String -> String
p_ = el "p"

p_ :: String -> Structure
p_ = Structure . el "p"

p_ = Structure . el "p"

(.) :: (b -> c) -> (a -> b) -> (a -> c)

https://learn-haskell.blog/print.html#type-checking-with-pen-and-paper
https://learn-haskell.blog/print.html#type-checking-with-pen-and-paper

1. b -> c

2. a -> b

Note: Applying a function with more arguments than it expects is a type error.

Since the . operator takes at least the number of arguments we supply, we continue to the next

phase of type-checking: matching the types of the inputs with the types of the expected inputs (from

the type signature of the operator).

When we match two types, we check for equivalence between them. There are a few possible

scenarios here:

1. When the two types are concrete (as opposed to type variables) and simple, like Int and

Bool , we check if they are the same. If they are, they type check, and we continue. If they

aren't, they don't type check, and we throw an error.

2. When the two types we match are more complex (for example, both are functions), we try to

match their inputs and outputs (in the case of functions). If the inputs and outputs match, then

the two types match.

3. There is a special case when one of the types is a type variable - in this case, we treat the

matching process like an equation and write it down somewhere. The next time we see this

type variable, we replace it with its match in the equation. Think about this like assigning a type

variable with a value.

In our case, we want to match (or check the equivalence of) these types:

1. String -> Structure with b -> c

2. String -> String with a -> b

Let's do this one by one, starting with (1) - matching String -> Structure and b -> c :

1. Because the two types are complex, we check that they are both functions, match their inputs

and outputs: String with b , and Structure with c .

2. Because b is a type variable, we mark down somewhere that b should be equivalent to

String . We write b ~ String (we use ~ to denote equivalence).

3. We match Structure and c , same as before, we write down that c ~ Structure .

No problem so far; let's try matching String -> String with a -> b :

1. The two types are complex; we see that both are functions, so we match their inputs and

outputs.

2. Matching String with a - we write down that a ~ String .

3. Matching String with b - we remember that we have already written about b - looking back,

we see that we already noted that b ~ String . We need to replace b with the type that we

wrote down before and check it against this type, so we match String with String which,

fortunately, type-check because they are the same.

So far, so good. We've type-checked the expression and discovered the following equivalences about

the type variables in it:

1. a ~ String

2. b ~ String

3. c ~ Structure

Now, when asking what is the type of the expression:

We say that it is the type of . after replacing the type variables using the equations, we found and

removing the inputs we applied to it, so we started with:

Then we replaced the type variables:

And removed the two arguments when we applied the function:

And we got the type of expression!

Fortunately, Haskell can do this process for us. But when Haskell complains that our types fail to

type-check, and we don't understand exactly why, going through this process can help us

understand where the types do not match, and then we can figure out how to solve it.

Note: If we use a parametrically polymorphic function more than once, or use different

functions that have similar type variable names, the type variables don't have to match in all

instances simply because they share a name. Each instance has its own unique set of type

variables. For example:

In the snippet above, we use id twice (for no good reason other than for demonstration

purposes). The first id takes a Char as argument, and its a is equivalent to Char . The

second id takes an Int as argument, and its distinct a is equivalent to Int .

This, unfortunately, only applies to functions defined at the top-level. If we'd define a local

function to be passed as an argument to incrementChar with the same type signature as id ,

the types must match in all uses. So this code:

Will not type check. Try it!

p_ = Structure . el "p"

(.) :: (b -> c) -> (a -> b) -> (a -> c)

(.) :: (String -> Structure) -> (String -> String) -> (String -> Structure)

Structure . el "p" :: String -> Structure

id :: a -> a
ord :: Char -> Int
chr :: Int -> Char

incrementChar :: Char -> Char
incrementChar c = chr (ord (id c) + id 1)

incrementChar :: (a -> a) -> Char -> Char
incrementChar func c = chr (ord (func c) + func 1)

Appending Structure

Before, when we wanted to create richer HTML content and appended nodes to one another, we

used the append (<>) operator. Since we are now not using String anymore, we need another way

to do it.

While it is possible to overload <> using a feature in Haskell called type classes, we will instead

create a new function and call it append_ , and cover type classes later.

append_ should take two Structure s, and return a third Structure , appending the inner String

in the first Structure to the second and wrapping the result back in Structure .

Try implementing append_ .

Converting back Html to String

After constructing a valid Html value, we want to be able to print it to the output so we can display it

in our browser. For that, we need a function that takes an Html and converts it to a String , which

we can then pass to putStrLn .

Exercise: Implement the render function.

type

Let's look at one more way to give new names to types.

A type definition looks really similar to a newtype definition - the only difference is that we

reference the type name directly without a constructor:

For example, in our case, we can write:

type , in contrast with newtype , is just a type name alias. When we declare Title as a type alias of

String , we mean that Title and String are interchangeable, and we can use one or the other

whenever we want:

Both are valid in this case.

We can sometimes use type s to give a bit more clarity to our code, but they are much less useful

type <type-name> = <existing-type>

type Title = String

"hello" :: Title

"hello" :: String

https://learn-haskell.blog/print.html#appending-structure
https://learn-haskell.blog/print.html#appending-structure
https://learn-haskell.blog/print.html#converting-back-html-to-string
https://learn-haskell.blog/print.html#converting-back-html-to-string
https://learn-haskell.blog/print.html#type
https://learn-haskell.blog/print.html#type

than newtype s which allow us to distinguish two types with the same type representation.

The rest of the owl

Exercise: Try changing the code we wrote in previous chapters to use the new types we created.

Tips

We can combine makeHtml and html_ , and remove body_ head_ and title_ by calling el

directly in html_ , which can now have the type Title -> Structure -> Html . This will make

our HTML EDSL less flexible but more compact.

Alternatively, we could create newtype s for HtmlHead and HtmlBody and pass those to html_ ,

and we might do that in later chapters, but I've chosen to keep the API a bit simple for now, we

can always refactor later!

Are we safe yet?

We have made some progress - now we can't write "Hello" where we'd expect either a paragraph

or a heading, but we can still write Structure "hello" and get something that isn't a paragraph or

a heading. So while we made it harder for the user to make mistakes by accident, we haven't really

been able to enforce the invariants we wanted to enforce in our library.

Next, we'll see how we can make expressions such as Structure "hello" illegal as well using

modules and smart constructors.

https://learn-haskell.blog/print.html#the-rest-of-the-owl
https://learn-haskell.blog/print.html#the-rest-of-the-owl
https://learn-haskell.blog/print.html#are-we-safe-yet
https://learn-haskell.blog/print.html#are-we-safe-yet

Preventing incorrect use with modules

In this section, we will move the HTML generation library to its own module.

Modules

Each Haskell source file is a module. The module name should have the same name as the source

file and start with a capital letter. Sub-directories should also be part of the name, and we use . to

denote a sub-directory. We'll see that in the next section.

The only exception to the rule are entry points to the program - modules with the name 'Main' that

define main in them. Their source file names could have any name they want.

A module declaration looks like this:

The export list can be omitted if you want to export everything defined in the module, but we don't.

We will list exactly the functions and types we want to export. This will give us control over how

people can use our tiny library.

We will create a new source file named Html.hs and add the following module declaration code at

the top of the file:

Note that we do not export:

1. The constructors for our new types, only the types themselves. If we wanted to export the

constructors as well, we would've written Html(Html) or Html(..) . This way the user cannot

create their own Structure by writing Structure "Hello" .

2. Internal functions used by the library, such as el and getStructureString .

And we will also move the HTML related functions from our hello.hs file to this new Html.hs file:

module <module-name>
 (<export-list>
)

where

module Html
 (Html
 , Title
 , Structure
 , html_
 , p_
 , h1_
 , append_
 , render
)
where

https://learn-haskell.blog/print.html#preventing-incorrect-use-with-modules
https://learn-haskell.blog/print.html#preventing-incorrect-use-with-modules
https://learn-haskell.blog/print.html#modules
https://learn-haskell.blog/print.html#modules

Now, anyone importing our module (using the import statement below module declarations but

above any other declaration), will only be able to import what we export.

Add the following code at the top of the hello.hs file:

The hello.hs file should now look like this:

newtype Html
 = Html String

newtype Structure
 = Structure String

type Title
 = String

html_ :: Title -> Structure -> Html
html_ title content =
Html

 (el "html"
 (el "head" (el "title" title)
 <> el "body" (getStructureString content)
)
)

p_ :: String -> Structure
p_ = Structure . el "p"

h1_ :: String -> Structure
h1_ = Structure . el "h1"

el :: String -> String -> String
el tag content =
"<" <> tag <> ">" <> content <> "</" <> tag <> ">"

append_ :: Structure -> Structure -> Structure
append_ c1 c2 =
Structure (getStructureString c1 <> getStructureString c2)

getStructureString :: Structure -> String
getStructureString content =
case content of
Structure str -> str

render :: Html -> String
render html =
case html of
Html str -> str

import Html

And the Html.hs file should look like this:

-- hello.hs

import Html

main :: IO ()
main = putStrLn (render myhtml)

myhtml :: Html
myhtml =
 html_

"My title"
 (append_
 (h1_ "Heading")
 (append_
 (p_ "Paragraph #1")
 (p_ "Paragraph #2")
)
)

As an aside, you might have noticed that I've decided to suffix the functions used to construct

HTML values with an underscore (_). This is mostly an aesthetic decision which, in my opinion,

makes the EDSL easier to recognize, but it is also useful to avoid name clashes with functions

defined in the Haskell standard library, such as head . I took this idea from a Haskell HTML

library named lucid !

-- Html.hs

module Html
 (Html
 , Title
 , Structure
 , html_
 , p_
 , h1_
 , append_
 , render
)
where

newtype Html
 = Html String

newtype Structure
 = Structure String

type Title
 = String

html_ :: Title -> Structure -> Html
html_ title content =
Html

 (el "html"
 (el "head" (el "title" title)
 <> el "body" (getStructureString content)
)
)

p_ :: String -> Structure
p_ = Structure . el "p"

h1_ :: String -> Structure
h1_ = Structure . el "h1"

el :: String -> String -> String
el tag content =
"<" <> tag <> ">" <> content <> "</" <> tag <> ">"

append_ :: Structure -> Structure -> Structure
append_ c1 c2 =
Structure (getStructureString c1 <> getStructureString c2)

getStructureString :: Structure -> String
getStructureString content =
case content of
Structure str -> str

render :: Html -> String
render html =
case html of
Html str -> str

Escaping characters

Now that Html has its own source file and module, and creating HTML code can be done only via

the functions we exported, we can also handle user input that may contain characters that may

conflict with our meta language, HTML, such as < and > , which are used for creating HTML tags.

We can convert these characters into different strings that HTML can handle.

See Stack overflow question for a list of characters, we need to escape.

Let's create a new function called escape :

In escape we see a few new things:

1. Let expressions: we can define local names using this syntax:

This will make <name> available as a variable in the second <expression> .

2. Pattern matching with multiple patterns: we match on different characters and convert them to

a string. Note that _ is a "catch all" pattern that will always succeed.

3. Two new functions: map and concat ; we'll talk about these in more in-depth

escape :: String -> String
escape =
let

 escapeChar c =
case c of

 '<' -> "<"
 '>' -> ">"
 '&' -> "&"
 '"' -> """
 '\'' -> ""'"
 _ -> [c]
in

 concat . map escapeChar

let

 <name> = <expression>

in

 <expression>

https://learn-haskell.blog/print.html#escaping-characters
https://learn-haskell.blog/print.html#escaping-characters
https://stackoverflow.com/questions/7381974/which-characters-need-to-be-escaped-in-html
https://stackoverflow.com/questions/7381974/which-characters-need-to-be-escaped-in-html

Linked lists briefly

Linked lists are very common data structures in Haskell, so common that they have their own special

syntax:

1. The list types are denoted with brackets, and inside them is the type of the element. For

example:

◦ [Int] - a list of integers

◦ [Char] - a list of characters

◦ [String] - a list of strings

◦ [[String]] - a list of a list of strings

◦ [a] - a list of any single type (all elements must be of the same type)

2. An empty list is written like this: []

3. Prepending an element to a list is done with the operator : (pronounced cons), which is right-

associative (like ->). For example: 1 : [] , or 1 : 2 : 3 : [] .

4. The above lists can also be written like [1] and [1, 2, 3] .

Also, Strings are linked lists of characters - String is defined as: type String = [Char] , so we can

use them the same way we use lists.

Do note, however, that linked lists, despite their convenience, are often not the right tool for

the job. They are not particularly space efficient and are slow for appending, random access,

and more. That also makes String a lot less efficient than what it could be. And I generally

recommend using a different string type, Text , instead, which is available in an external

package. We will talk about lists, Text , and other data structures in the future!

We can implement our own operations on lists by using pattern matching and recursion. And we'll

touch on this subject later when talking about ADTs.

For now, we will use the various functions found in the Data.List module. Specifically, map and

concat.

map

Using map , we can apply a function to each element in a list. Its type signature is:

For example:

Or as can be seen in our escape function, this can help us escape each character:

However, note that the escapeChar has the type Char -> String , so the result type of map

escapeChar ['<','h','1','>'] is [String] , and what we really want is a String and not

[String] .

map :: (a -> b) -> [a] -> [b]

map not [False, True, False] == [True, False, True]

map escapeChar ['<','h','1','>'] == ["<","h","1",">"]

https://learn-haskell.blog/print.html#linked-lists-briefly
https://learn-haskell.blog/print.html#linked-lists-briefly
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-List.html
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-List.html
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-List.html#v:map
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-List.html#v:map
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-List.html#v:concat
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-List.html#v:concat
https://learn-haskell.blog/print.html#map
https://learn-haskell.blog/print.html#map

This is where concat enters the picture to help us flatten the list.

concat

concat has the type:

It flattens a list of list of something into a list of something. In our case it will flatten [String] into

String , remember that String is a type alias for [Char] , so we actually have [[Char]] ->

[Char] .

GHCi

One way we can quickly see our code in action is by using the interactive development environment

GHCi. Running ghci will open an interactive prompt where Haskell expressions can be written and

evaluated. This is called a "Read-Evaluate-Print Loop" (for short - REPL).

For example:

We can define new names:

We can write multi-line code by surrounding it with :{ and :} :

We can import Haskell source files using the :load command (:l for short):

concat :: [[a]] -> [a]

ghci> 1 + 1
2
ghci> putStrLn "Hello, world!"
Hello, world!

ghci> double x = x + x
ghci> double 2
4

ghci> :{
| escape :: String -> String
| escape =
| let
| escapeChar c =
| case c of
| '<' -> "<"
| '>' -> ">"
| '&' -> "&"
| '"' -> """
| '\'' -> "'"
| _ -> [c]
| in
| concat . map escapeChar
| :}

ghci> escape "<html>"
"<html>"

https://learn-haskell.blog/print.html#concat
https://learn-haskell.blog/print.html#concat
https://learn-haskell.blog/print.html#ghci
https://learn-haskell.blog/print.html#ghci

As well as import library modules:

We can even ask the type of an expression using the :type command (:t for short):

To exit ghci , use the :quit command (or :q for short)

GHCi is a very useful tool for quick experiments and exploration. We've seen a couple of examples of

that above - passing the string "<html>" to our escape function returns the string

"<html>" , which can be rendered by a browser as <html> instead of an HTML tag.

If you are having a hard time figuring out what a particular function does, consider testing it in GHCi

- pass it different inputs and see if it matches your expectations. Concrete examples of running code

can aid a lot in understanding it!

If you'd like to learn more about GHCi, you can find a more thorough introduction in the GHC

user guide.

Escaping

The user of our library can currently only supply strings in a few places:

1. Page title

2. Paragraphs

3. Headings

We can apply our escape function at these places before doing anything else with it. That way, all

HTML constructions are safe.

Try adding the escaping function in those places, and then try to construct an invalid HTML in

hello.hs to see if this works or not!

Now we can use our tiny HTML library safely. But what if the user wants to use our library with a

ghci> :load Html.hs
[1 of 1] Compiling Html (Html.hs, interpreted)
Ok, one module loaded.
ghci> render (html_ "<title>" (p_ "<body>"))
"<html><head><title><title></title></head><body><p><body></p></body>
</html>"

ghci> import Data.Bits
ghci> shiftL 32 1
64
ghci> clearBit 33 0
32

λ> :type escape
escape :: String -> String

ghci> :quit
Leaving GHCi.

https://downloads.haskell.org/ghc/latest/docs/users_guide/ghci.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/ghci.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/ghci.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/ghci.html
https://learn-haskell.blog/print.html#escaping
https://learn-haskell.blog/print.html#escaping

valid use case we didn't think about, for example, adding unordered lists? We are completely

blocking them from extending our library. We'll talk about this next.

Exposing internal functionality (Internal

modules)

We have now built a very small but convenient and safe way to write HTML code in Haskell. This is

something that we could (potentially) publish as a library and share with the world by uploading it to

a package repository such as Hackage. Users interested in our library could use a package manager

to include it in their project and build their own HTML pages.

It is important to note that users are building their projects against the API that we expose to them,

and the package manager doesn't generally provide access to the source code, so they can't, for

example, modify the Html module (that we expose) in their project directly without jumping

through some hoops.

Because we wanted our Html EDSL to be safe, we hid the internal implementation from the

user, and the only way to interact with the library is via the API we provide.

This provides the safety we wanted to provide, but in this case, it also blocks the user from extending

our library in their own project with things we haven't implemented yet, such as lists or code blocks.

When a user runs into trouble with a library (such as missing features) the best course of action

usually is to open an issue in the repository or submit a pull request, but sometimes the user needs

things to work now.

We admit that we are not perfect and can't think of all use cases for our library. Sometimes the

restrictions we add are too great and may limit the usage of advanced users who know how things

work under the hood and need certain functionality to use our library.

Internal modules

For that, we can expose internal modules to provide some flexibility for advanced users. Internal

modules are not a language concept but rather a (fairly common) design pattern (or idiom) in

Haskell.

Internal modules are simply modules named <something>.Internal , which export all of the

functionality and implementation details in that module.

Instead of writing the implementation in (for example) the Html module, we write it in the

Html.Internal module, which will export everything. Then we will import that module in the Html

module and write an explicit export list to only export the API we'd like to export (as before).

Internal modules are considered unstable and risky to use by convention. If you end up using one

yourself when using an external Haskell library, make sure to open a ticket in the library's repository

after the storm has passed!

Let's make the changes

We will create a new directory named Html and inside it a new file named Internal.hs . The name

of this module should be Html.Internal .

https://learn-haskell.blog/print.html#exposing-internal-functionality-internal-modules
https://learn-haskell.blog/print.html#exposing-internal-functionality-internal-modules
https://learn-haskell.blog/print.html#exposing-internal-functionality-internal-modules
https://learn-haskell.blog/print.html#exposing-internal-functionality-internal-modules
https://hackage.haskell.org/
https://hackage.haskell.org/
https://learn-haskell.blog/print.html#internal-modules
https://learn-haskell.blog/print.html#internal-modules
https://learn-haskell.blog/print.html#lets-make-the-changes
https://learn-haskell.blog/print.html#lets-make-the-changes

This module will contain all of the code we previously had in the Html module, but we will change

the module declaration in Html.Internal and omit the export list:

And now in Html.hs , we will remove the code that we moved to Html/Internal.hs and in its stead

we'll import the internal module:

Now, users of our library can still import Html and safely use our library, but if they run into trouble

and have a dire need to implement unordered lists to work with our library, they could always work

with Html.Internal instead.

Summary

For our particular project, Internal modules aren't necessary. Because our project and the source

code for the HTML EDSL are part of the same project, and we have access to the Html module

directly, we can always go and edit it if we want (and we are going to do that throughout the book).

However, if we were planning to release our HTML EDSL as a library for other developers to use, it

would be nice to also expose the internal implementation as an Internal module. Just so we can

save some trouble for potential users!

In a later chapter, we will see how to create a package from our source code.

-- Html/Internal.hs

module Html.Internal where

...

-- Html.hs

module Html
 (Html
 , Title
 , Structure
 , html_
 , p_
 , h1_
 , append_
 , render
)
where

import Html.Internal

https://learn-haskell.blog/print.html#summary
https://learn-haskell.blog/print.html#summary

Exercises

We need a few more features for our HTML library to be useful for our blog software. Add the

following features to our Html.Internal module and expose them from Html .

1. Unordered lists

These lists have the form:

We want in our library a new function:

So that users can write this:

and get this:

2. Ordered lists

Very similar to unordered lists, but instead of we use

3. Code blocks

Very similar to <p> , but use the <pre> tag. Call this function code_ .

item 1
item 2
...

ul_ :: [Structure] -> Structure

ul_
 [p_ "item 1"
 , p_ "item 2"
 , p_ "item 3"
]

<p>item 1</p>
<p>item 2</p>
<p>item 3</p>

https://learn-haskell.blog/print.html#exercises
https://learn-haskell.blog/print.html#exercises
https://learn-haskell.blog/print.html#1-unordered-lists
https://learn-haskell.blog/print.html#1-unordered-lists
https://learn-haskell.blog/print.html#2-ordered-lists
https://learn-haskell.blog/print.html#2-ordered-lists
https://learn-haskell.blog/print.html#3-code-blocks
https://learn-haskell.blog/print.html#3-code-blocks

Summary

In this chapter, we built a very minimal HTML EDSL. We will later use this library to convert our

custom markup formatted text to HTML.

We've also learned about:

• Defining and using functions

• Types and type signatures

• Embedded domain-specific languages

• Chaining functions using the . operator

• Preventing incorrect use with newtype s

• Defining modules and the Internal module pattern

• Encapsulation using newtype s and modules

Here's our complete program up to this point:

-- hello.hs

import Html

main :: IO ()
main = putStrLn (render myhtml)

myhtml :: Html
myhtml =
 html_

"My title"
 (append_
 (h1_ "Heading")
 (append_
 (p_ "Paragraph #1")
 (p_ "Paragraph #2")
)
)

-- Html.hs

module Html
 (Html
 , Title
 , Structure
 , html_
 , h1_
 , p_
 , ul_
 , ol_
 , code_
 , append_
 , render
)
where

import Html.Internal

https://learn-haskell.blog/print.html#summary-1
https://learn-haskell.blog/print.html#summary-1

-- Html/Internal.hs

module Html.Internal where

-- * Types

newtype Html
 = Html String

newtype Structure
 = Structure String

type Title
 = String

-- * EDSL

html_ :: Title -> Structure -> Html
html_ title content =
Html

 (el "html"
 (el "head" (el "title" (escape title))
 <> el "body" (getStructureString content)
)
)

p_ :: String -> Structure
p_ = Structure . el "p" . escape

h1_ :: String -> Structure
h1_ = Structure . el "h1" . escape

ul_ :: [Structure] -> Structure
ul_ =
Structure . el "ul" . concat . map (el "li" . getStructureString)

ol_ :: [Structure] -> Structure
ol_ =
Structure . el "ol" . concat . map (el "li" . getStructureString)

code_ :: String -> Structure
code_ = Structure . el "pre" . escape

append_ :: Structure -> Structure -> Structure
append_ c1 c2 =
Structure (getStructureString c1 <> getStructureString c2)

-- * Render

render :: Html -> String
render html =
case html of
Html str -> str

-- * Utilities

el :: String -> String -> String
el tag content =
"<" <> tag <> ">" <> content <> "</" <> tag <> ">"

getStructureString :: Structure -> String
getStructureString content =
case content of
Structure str -> str

escape :: String -> String
escape =
let

 escapeChar c =
case c of

 '<' -> "<"
 '>' -> ">"
 '&' -> "&"
 '"' -> """
 '\'' -> "'"
 _ -> [c]
 in
 concat . map escapeChar

Custom markup language

In this chapter, we will define our own simple markup language and parse documents written in this

language into Haskell data structures.

Our markup language will contain the following features:

• Headings: prefix by a number of * characters

• Paragraphs: a group of lines without empty lines in between

• Unordered lists: a group of lines, each prefixed with -

• Ordered lists: a group of lines, each prefixed with #

• Code blocks: a group of lines, each prefixed with >

Here's a sample document:

which we will eventually convert into this (modulo formatting) HTML:

* Compiling programs with ghc

Running ghc invokes the Glasgow Haskell Compiler (GHC),
and can be used to compile Haskell modules and programs into native
executables and libraries.

Create a new Haskell source file named hello.hs, and write
the following code in it:

> main = putStrLn "Hello, Haskell!"

Now, we can compile the program by invoking ghc with the file name:

> ➜ ghc hello.hs
> [1 of 1] Compiling Main (hello.hs, hello.o)
> Linking hello ...

GHC created the following files:

- hello.hi - Haskell interface file
- hello.o - Object file, the output of the compiler before linking
- hello (or hello.exe on Microsoft Windows) - A native runnable executable.

GHC will produce an executable when the source file satisfies both conditions:

Defines the main function in the source file
Defines the module name to be Main or does not have a module declaration

Otherwise, it will only produce the .o and .hi files.

https://learn-haskell.blog/print.html#custom-markup-language
https://learn-haskell.blog/print.html#custom-markup-language

<h1>Compiling programs with ghc</h1>

<p>Running ghc invokes the Glasgow Haskell Compiler (GHC),
and can be used to compile Haskell modules and programs into native
executables and libraries.
</p>

<p>Create a new Haskell source file named hello.hs, and write
the following code in it:
</p>

<pre>main = putStrLn "Hello, Haskell!"
</pre>

<p>Now, we can compile the program by invoking ghc with the file name:</p>

<pre>
➜ ghc hello.hs
[1 of 1] Compiling Main (hello.hs, hello.o)
Linking hello ...
</pre>

<p>GHC created the following files:
</p>

hello.hi - Haskell interface file
hello.o - Object file, the output of the compiler before linking
hello (or hello.exe on Microsoft Windows) - A native runnable executable.

<p>GHC will produce an executable when the source file satisfies both conditions:
</p>

Defines the main function in the source file
Defines the module name to be Main, or does not have a module declaration

<p>Otherwise, it will only produce the .o and .hi files.
</p>

Representing the markup language as a

Haskell data type

One of the clear differentiators between Haskell (also other ML-family of languages) and most

mainstream languages is the ability to represent data precisely and succinctly.

So how do we represent our markup language using Haskell?

Previously, in our HTML builder library, we used newtype s to differentiate between HTML

documents, structures, and titles, but we didn't really need to differentiate between different kinds

of structures, such as paragraphs and headings, not without parsing the data, at least.

In this case, we have a list of structures, and each structure could be one of a few specific options (a

paragraph, a heading, a list, etc.), and we want to be able to know which structure is which so we can

easily convert it into the equivalent HTML representation.

For that, we have data definitions. Using data we can create custom types by grouping multiple

types together and having alternative structures. Think of them as a combination of both structs and

enums.

data declarations look like this:

It looks really similar to newtype , but there are two important differences:

1. In the <types> part, we can write many types (Like Int , String , or Bool). For newtype s, we

can only write one.

2. We can have alternative structures using | , newtype s have no alternatives.

This is because newtype is used to provide a type-safe alias, and data is used to build a new

composite type that can potentially have alternatives.

Let's see a few examples of data types:

1. Bool

We created a new data type named Bool with the possible values True or False . In this case,

we only have constructor alternatives, and none of the constructors carry additional values. This

is similar to enums in other languages.

2. Person

data <Type-name> <type-args>
 = <Data-constructor1> <types>
 | <Data-constructor2> <types>
 | ...

data Bool

 = True

 | False

https://learn-haskell.blog/print.html#representing-the-markup-language-as-a-haskell-data-type
https://learn-haskell.blog/print.html#representing-the-markup-language-as-a-haskell-data-type
https://learn-haskell.blog/print.html#representing-the-markup-language-as-a-haskell-data-type
https://learn-haskell.blog/print.html#representing-the-markup-language-as-a-haskell-data-type

We created a new data type named Person . Values of the type Person look like this:

For example:

In this case, we create a composite of multiple types without alternatives. This is similar to

structs in other languages, but structs give each field a name, and here we distinguish them by

position.

Alternatively, Haskell has syntactic sugar for naming fields called records. The above definition

can also be written like this:

Values of this type can be written exactly as before,

Or with this syntax:

Haskell will also generate functions that can be used to extract the fields from the composite

type:

Which can be used like this:

We even have a special syntax for updating specific fields in a record. Of course, we do not

update records in place - we generate a new value instead.

data Person

 = Person String Int -- where the first is the name and the second is

-- the age

Person <some-string> <some-int>

Person "Gil" 32

data Person

 = Person

 { name :: String

 , age :: Int

 }

Person "Gil" 32

Person { name = "Gil", age = 32 }

name :: Person -> String

age :: Person -> Int

ghci> age (Person { name = "Gil", age = 32 })

32

Unfortunately, having specialized functions for each field also means that if we defined a

different data type with the field age , the functions which GHC needs to generate will clash.

The easiest way to solve this is to give fields unique names, for example by adding a prefix:

Another way is by using extensions to the Haskell language, which we will cover in later

chapters.

3. Tuple

This is pretty similar to Person , but we can plug any type we want for this definition. For

example:

This type has special syntax in Haskell:

This Tuple definition is polymorphic; we define the structure but are able to plug different

types into the structure to get concrete types. You can think of Tuple as a template for a data

type waiting to be filled or as a function waiting for types as input in order to return a data

type. We can even take a look at the "type" signature of Tuple in ghci using the :kind

command.

ghci> gil = Person { name = "Gil", age = 32 }

ghci> age (gil { age = 33 })

33

ghci> age gil

32

data Person

 = Person

 { pName :: String

 , pAge :: Int

 }

data Tuple a b

 = Tuple a b

Tuple "Clicked" True :: Tuple String Bool

Tuple 'a' 'z' :: Tuple Char Char

("Clicked", True) :: (String, Bool)

('a', 'z') :: (Char, Char)

ghci> data Tuple a b = Tuple a b

ghci> :kind Tuple

Tuple :: * -> * -> *

Quick detour: Kinds

The :kind command is called as such because the "type" of a type is called a kind. Kinds

can be one of two things, either a * , which means a saturated (or concrete) type, such as

Int or Person , or an -> of two kinds, which is, as you might have guessed, a type

function, taking kind and returning a kind.

Note that only types that have the kind * can have values. So, for example, while Tuple

Int is a valid Haskell concept that has the kind * -> * , and we can write code that will

work "generically" for all types that have a certain kind (e.g. * -> *), we cannot construct

a value that has the kind * -> * . All values have types and all types that have values

have the kind * .

We will talk more about kinds later; let's focus on types for now!

4. Either

Similar to Tuple, but instead of having only one constructor, we have two. This means that we

can choose which side we want. Here are a couple of values of type Either String Int :

This type is useful for modeling errors. Either we succeeded and got what we wanted (The

Right constructor with the value), or we didn't and got an error instead (The Left constructor

with a string or a custom error type).

In our program, we use data types to model the different kinds of content types in our markup

language. We tag each structure using the data constructor and provide the rest of the information

(the paragraph text, the list items, etc.) in the <types> section of the data declaration for each

constructor:

Note: Natural is defined in the base package but not exported from Prelude . Find out which

module to import Natural by using Hoogle.

data Either a b

 = Left a

 | Right b

Left "Hello"

Right 17

type Document
 = [Structure]

data Structure
 = Heading Natural String
 | Paragraph String
 | UnorderedList [String]
 | OrderedList [String]
 | CodeBlock [String]

https://learn-haskell.blog/print.html#quick-detour-kinds
https://learn-haskell.blog/print.html#quick-detour-kinds
https://hoogle.haskell.org/
https://hoogle.haskell.org/

Exercises

Represent the following markup documents as values of Document :

1.

2.

3.

4.

Hello, world!

* Welcome

To this tutorial about Haskell.

Remember that multiple lines with no separation

are grouped together into a single paragraph

but list items remain separate.

Item 1 of a list

Item 2 of the same list

* Compiling programs with ghc

Running ghc invokes the Glasgow Haskell Compiler (GHC),

and can be used to compile Haskell modules and programs into native

executables and libraries.

Create a new Haskell source file named hello.hs, and write

the following code in it:

> main = putStrLn "Hello, Haskell!"

Now, we can compile the program by invoking ghc with the file name:

> ➜ ghc hello.hs

> [1 of 1] Compiling Main (hello.hs, hello.o)

> Linking hello ...

GHC created the following files:

- hello.hi - Haskell interface file

- hello.o - Object file, the output of the compiler before linking

- hello (or hello.exe on Microsoft Windows) - A native runnable executable.

GHC will produce an executable when the source file satisfies both conditions:

Defines the main function in the source file

Defines the module name to be Main or does not have a module declaration

Otherwise, it will only produce the .o and .hi files.

https://learn-haskell.blog/print.html#exercises-1
https://learn-haskell.blog/print.html#exercises-1

Translating directly?

You might ask, "Why do we even need to represent the markup as a type? Why don't we convert it

into HTML as soon as we parse it instead?". That's a good question and a valid strategy. The reason

we first represent it as a Haskell type is for flexibility and modularity.

If the parsing code is coupled with HTML generation, we lose the ability to pre-process the markup

document. For example, we might want to take only a small part of the document (for a summary)

and present it, or create a table of content from headings. Or maybe we'd like to add other targets

and not just HTML - maybe markdown format or a GUI reader?

Parsing to an "abstract data type" (ADT) representation (one that does not contain the details of the

language, for example, '#' for ordered lists) gives us the freedom to do so much more than just

conversion to HTML that it's usually worth it, in my opinion, unless you really need to optimize the

process.

https://learn-haskell.blog/print.html#translating-directly
https://learn-haskell.blog/print.html#translating-directly

Parsing markup part 01 (Recursion)

Let's have a look at how to parse a multi-lined string of markup text written by a user and convert it

to the Document type we defined in the previous chapter.

Our strategy is to take the string of markup text and:

1. Split it into a list where each element represents a separate line, and

2. Go over the list line by line and process it, remembering information from previous lines if

necessary

So the first thing we want to do is to process the string line by line. We can do that by converting the

string to a list of string. Fortunately the Haskell Prelude module from the Haskell standard library

base exposes the function lines that does exactly what we want. The Prelude module is exposed

in every Haskell file by default, so we don't need to import it.

For the line processing part, let's start by ignoring all of the markup syntax and just group lines

together into paragraphs (paragraphs are separated by an empty line), and iteratively add new

features later in the chapter.

A common solution in imperative programs would be to iterate over the lines using some loop

construct and accumulate lines that should be grouped together into some intermediate mutable

variable. When we reach an empty line, we insert the content of that variable into another mutable

variable that accumulates the results.

Our approach in Haskell isn't so different, except that we do not use loops or mutable variables.

Instead, we use recursion.

Recursion and accumulating information

Instead of loops, in Haskell, we use recursion to model iteration.

Consider the following contrived example: let's say that we want to write an algorithm for adding

two natural numbers together, and we don't have a standard operation to do that (+), but we do

have two operations we could use on each number: increment and decrement .

A solution we could come up with is to slowly "pass" one number to the other number iteratively by

incrementing one and decrementing the other. And we do that until the number we decrement

reaches 0.

For example, for 3 and 2 :

• We start with 3 and 2 , and we increment 3 and decrement 2

• In the next step, we now have 4 and 1 , we increment 4 and decrement 1

• In the next step, we now have 5 and 0 , since the second number is 0 we declare 5 as the

result.

This can be written imperatively using a loop:

https://learn-haskell.blog/print.html#parsing-markup-part-01-recursion
https://learn-haskell.blog/print.html#parsing-markup-part-01-recursion
https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#v:lines
https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#v:lines
https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#v:lines
https://hackage.haskell.org/package/base
https://hackage.haskell.org/package/base
https://hackage.haskell.org/package/base
https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#v:lines
https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#v:lines
https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#v:lines
https://learn-haskell.blog/print.html#recursion-and-accumulating-information
https://learn-haskell.blog/print.html#recursion-and-accumulating-information

We can write the same algorithm in Haskell without mutation using recursion:

In Haskell, to emulate iteration with a mutable state, we call the function again with the values we want

the variables to have in the next iteration.

Evaluation of recursion

Recursion commonly has a bad reputation for being slow and possibly unsafe compared to loops.

This is because, in imperative languages, calling a function often requires creating a new call stack.

However, functional languages (and Haskell in particular) play by different rules and implement a

feature called tail call elimination - when the result of a function call is the result of the function (this

is called tail position), we can just drop the current stack frame and then allocate one for the

function we call, so we don't require N stack frames for N iterations.

This is, of course, only one way to do tail call elimination and other strategies exist, such as

translating code like our recursive add above to the iteration version.

Laziness

Haskell plays by slightly different rules because it uses a lazy evaluation strategy instead of the much

more common strict evaluation strategy. An evaluation strategy refers to "when do we evaluate a

computation". In a strict language, the answer is simple: we evaluate the arguments of a function

before entering a function.

So, for example, the evaluation of add (increment 3) (decrement 2) using strict evaluation will

look like this:

1. Evaluate increment 3 to 4

2. Evaluate decrement 2 to 1

3. Evaluate add 4 1

Or, Alternatively (depending on the language), we reverse (1) and (2) and evaluate the arguments

from right-to-left instead of left-to-right.

On the other hand, with lazy evaluation, we only evaluate computation when we need it, which is when

it is part of a computation that will have some effect on the outside world, for example, when writing

a computation to standard output or sending it over the network.

So unless this computation is required, it won't be evaluated. For example:

function add(n, m) {
while (m /= 0) {

 n = increment(n);
 m = decrement(m);
 }
return n;

}

add n m =
if m /= 0
then add (increment n) (decrement m)
else n

https://learn-haskell.blog/print.html#evaluation-of-recursion
https://learn-haskell.blog/print.html#evaluation-of-recursion
https://learn-haskell.blog/print.html#laziness
https://learn-haskell.blog/print.html#laziness

In the case above, we need the result of add (increment 2) (decrement 3) in order to know which

message to write, so it will be evaluated. But:

In the case above, we don't actually need five , so we don't evaluate it!

But then, if we know we need add (increment 2) (decrement 3) , do we use strict evaluation now?

The answer is no - because we might not need to evaluate the arguments to complete the

computation. For example, in this case:

const ignores the second argument and returns the first, so we don't actually need to calculate

decrement 3 to provide an answer to the computation and in turn output an answer to the screen.

With the lazy evaluation strategy, we will evaluate expressions when we need to (when they are

required in order to do something for the user), and we evaluate from the outside in - first we enter

functions, and then we evaluate the arguments when we need to (usually when the thing we want to

evaluate appears in some control flow such as the condition of an if expression or a pattern in

pattern matching).

I've written a more in-depth blog post about how this works in Haskell: Substitution and Equational

Reasoning.

Please read it and try to evaluate the following program by hand:

main =
if add (increment 2) (decrement 3) == 5
then putStrLn "Yes."
else putStrLn "No."

main =
let

 five = add (increment 2) (decrement 3)
in

 putStrLn "Not required"

const a b = a

main =
if const (increment 2) (decrement 3) == 3
then putStrLn "Yes."
else putStrLn "No."

https://gilmi.me/blog/post/2020/10/01/substitution-and-equational-reasoning
https://gilmi.me/blog/post/2020/10/01/substitution-and-equational-reasoning
https://gilmi.me/blog/post/2020/10/01/substitution-and-equational-reasoning
https://gilmi.me/blog/post/2020/10/01/substitution-and-equational-reasoning

Remember that evaluation always begins from main .

General recursion

In general, when trying to solve problems recursively, it is useful to think about the problem in three

parts:

1. Finding the base case (the most simple cases - the ones we already know how to answer)

2. Figuring out how to reduce the problem to something simpler (so it gets closer to the base

case)

3. Mitigating the difference between the reduced version and the solution we need to provide

The reduce and mitigate steps together are usually called the recursive step.

Let's take a look at another example problem: generating a list of a particular size with a specific

value in place of every element.

In Haskell, this function would have the following signature:

Here are a few usage examples of replicate :

How would we implement this function recursively? How would we describe it in the three steps

above?

1. Base case: the cases we already know how to generate are the cases where the length of the

list is zero (or less) - we just return an empty list.

2. Reduce: while we might not know how to generate a list of size N (where N is positive), if we

knew the solution for N-1 , we could:

import Prelude hiding (const) -- feel free to ignore this line

increment n = n + 1

decrement n = n - 1

const a b = a

add n m =
if m /= 0
then add (increment n) (decrement m)
else n

main =
if const (add 3 2) (decrement 3) == 5
then putStrLn "Yes."
else putStrLn "No."

replicate :: Int -> a -> [a]

ghci> replicate 4 True
[True,True,True,True]
ghci> replicate 0 True
[]
ghci> replicate (-13) True
[]

https://learn-haskell.blog/print.html#general-recursion
https://learn-haskell.blog/print.html#general-recursion

3. Mitigate: Add another element to the solution for N-1 using the : (cons) operator.

Exercise: Try to write this in Haskell!

Mutual recursion

When solving functions recursively, we usually call the same function again, but that doesn't have to

be the case. It is possible to reduce our problem to something simpler that requires an answer from

a different function. If, in turn, that function will (or another function in that call chain) call our

function again; we have a mutual recursive solution.

For example, let's write two functions, one that checks whether a natural number is even or not, and

one that checks whether a number is odd or not only by decrementing it.

Let's start with even ; how should we solve this recursively?

1. Base case: We know the answer for 0 - it is True .

2. Reduction: We might not know the answer for a general N , but we could check whether N -

1 is odd,

3. Mitigation: if N - 1 is odd, then N is even! if it isn't odd, then N isn't even.

What about odd ?

1. Base case: We know the answer for 0 - it is False .

2. Reduction: We might not know the answer for a general N , but we could check whether N -

1 is even,

3. Mitigation: if N - 1 is even, then N is odd! if it isn't even, then N isn't odd.

Exercise: Try writing this in Haskell!

Partial functions

Because we didn't handle the negative numbers cases in the example above, our functions will loop

forever when a negative value is passed as input. A function that does not return a result for some

value (either by not terminating or by throwing an error) is called a partial function (because it only

returns a result for a part of the possible inputs).

Partial functions are generally considered bad practice because they can have undesired behaviour

at runtime (a runtime exception or an infinite loop), so we want to avoid using partial functions as

well as avoid writing partial functions.

The best way to avoid writing partial functions is by covering all inputs! In the situation above, it is

definitely possible to handle negative numbers as well, so we should do that! Or, instead, we could

even :: Int -> Bool

odd :: Int -> Bool

https://learn-haskell.blog/print.html#mutual-recursion
https://learn-haskell.blog/print.html#mutual-recursion
https://learn-haskell.blog/print.html#partial-functions
https://learn-haskell.blog/print.html#partial-functions

require that our functions accept a Natural instead of an Int , and then the type system would've

stopped us from using these functions with values we did not handle.

There are cases where we can't possibly cover all inputs; in these cases, it is important to re-examine

the code and see if we could further restrict the inputs using types to mitigate these issues.

For example, the head :: [a] -> a function from Prelude promises to return the first element

(the head) of a list, but we know that lists could possibly be empty, so how can this function deliver

on its promise?

Unfortunately, it can't. But there exists a different function that can: head :: NonEmpty a -> a from

the Data.List.NonEmpty module! The trick here is that this other head does not take a general list

as input, it takes a different type entirely, one that promises to have at least one element and,

therefore, can deliver on its promise!

We could also potentially use smart constructors with newtype and enforce some sort of restrictions

in the type system, as we saw in earlier chapters, But this solution can sometimes be less ergonomic

to use.

An alternative approach is to use data types to encode the absence of a proper result, for example,

using Maybe , as we'll see in a future chapter.

Make sure the functions you write return a result for every input, either by constraining the input

using types or by encoding the absence of a result using types.

Parsing markup?

Let's get back to the task at hand.

As stated previously, our strategy for parsing the markup text is:

1. Split the string into a list where each element is a separate line (which we can do with lines),

and

2. Go over the list line by line and process it, remembering information from previous lines if

necessary

Remember that we want to start by ignoring all of the markup syntax and just group lines together

into paragraphs (paragraphs are separated by an empty line), and iteratively add new features later

in the chapter:

https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-List-NonEmpty.html
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-List-NonEmpty.html
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-List-NonEmpty.html
https://learn-haskell.blog/print.html#parsing-markup
https://learn-haskell.blog/print.html#parsing-markup
https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#v:lines
https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#v:lines
https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#v:lines

Things to note:

1. We pass a list that contains the currently grouped paragraph (paragraphs are separated by an

empty line)

2. Because of laziness, paragraph is not computed until it's needed, so we don't have to worry

about the performance implications in the case that we are still grouping lines

3. Why do we reverse currentParagraph ? (See point (6))

4. We saw case expressions used to deconstruct newtype s and Char s, but we can also pattern

match on lists and other ADTs as well! In this case, we match against two patterns, an empty

list ([]), and a "cons cell" - a list with at least one element (currentLine : rest). In the body

of the "cons" pattern, we bind the first element to the name currentLine , and the rest of the

elements to the name rest .

We will talk about how all of this works really soon!

5. When we run into an empty line, we add the accumulated paragraph to the resulting list (A

Document is a list of structures) and start the function again with the rest of the input.

6. We pass the new lines to be grouped in a paragraph in reverse order because of performance

characteristics - because of the nature of singly-linked lists, prepending an element is fast, and

appending is slow. Prepending only requires us to create a new cons (:) cell to hold a pointer

to the value and a pointer to the list, but appending requires us to traverse the list to its end

and rebuild the cons cells - the last one will contain the last value of the list and a pointer to the

list to append, the next will contain the value before the last value of the list and a pointer to

the list, which contains the last element and the appended list, and so on.

This code above will group together paragraphs in a structure, but how do we view our result? In the

next chapter, we will take a short detour and talk about type classes, and how they can help us in

this scenario.

parse :: String -> Document
parse = parseLines [] . lines -- (1)

parseLines :: [String] -> [String] -> Document
parseLines currentParagraph txts =
let

 paragraph = Paragraph (unlines (reverse currentParagraph)) -- (2), (3)
in
case txts of -- (4)

 [] -> [paragraph]
 currentLine : rest ->

if trim currentLine == ""
then

 paragraph : parseLines [] rest -- (5)
else

 parseLines (currentLine : currentParagraph) rest -- (6)

trim :: String -> String
trim = unwords . words

Displaying the parsing results (type classes)

We want to be able to print a textual representation of values of our Document type. There are a few

ways to do that:

1. Write our own function of type Document -> String , which we could then print, or

2. Have Haskell write one for us

Haskell provides us with a mechanism that can automatically generate the implementation of a type

class function called show , that will convert our type to String .

The type of the function show looks like this:

This is something new we haven't seen before. Between :: and => you see what is called a type

class constraint on the type a . What we say in this signature is that the function show can work on

any type that is a member of the type class Show .

Type classes is a feature in Haskell that allows us to declare a common interface for different types.

In our case, Haskell's standard library defines the type class Show in the following way (this is a

simplified version but good enough for our purposes):

A type class declaration describes a common interface for Haskell types. show is an overloaded

function that will work for any type that is an instance of the type class Show . We can define an

instance of a type class manually like this:

Defining an instance means providing an implementation for the interface of a specific type. When

we call the function show on a data type, the compiler will search the type's Show instance, and use

the implementation provided in the instance declaration.

As seen above, the show function converts a value to its textual representation. That is why

"Hello" includes the quotes as well. The Show type class is usually used for debugging purposes.

Deriving instances

show :: Show a => a -> String

class Show a where
 show :: a -> String

instance Show Bool where
 show x =

case x of
True -> "True"
False -> "False"

ghci> show True
"True"
ghci> show 187
"187"
ghci> show "Hello"
"\"Hello\""

https://learn-haskell.blog/print.html#displaying-the-parsing-results-type-classes
https://learn-haskell.blog/print.html#displaying-the-parsing-results-type-classes
https://learn-haskell.blog/print.html#deriving-instances
https://learn-haskell.blog/print.html#deriving-instances

It is also possible to automatically generate implementations of a few selected type classes.

Fortunately, Show is one of them.

If all the types in the definition of our data type already implement an instance of Show , we can

automatically derive it by adding deriving Show at the end of the data definition.

Now we can use the function show :: Show a => a -> String for any type that implements an

instance of the Show type class. For example, with print :

We can first convert our type to String and then write it to the standard output.

And because lists also implement Show for any element type that has a Show instance, we can now

print Document s, because they are just aliases for [Structure] . Try it!

There are many type classes Haskellers use everyday. A couple more are Eq for equality and Ord

for ordering. These are also special type classes that can be derived automatically.

Laws

Type classes often come with "rules" or "laws" that instances should satisfy, the purpose of these

laws is to provide predictable behaviour across instances, so that when we run into a new instance we

can be confident that it will behave in an expected way, and we can write code that works generically

for all instances of a type class while expecting them to adhere to these rules.

As an example, let's look at the Semigroup type class:

This type class provides a common interface for types with an operation <> that can combine two

values into one in some way.

This type class also mentions that this <> operation should be associative, meaning that these two

sides should evaluate to the same result:

An example of a lawful instance of Semigroup is lists with the append operation (++):

data Structure
 = Heading Natural String
 | Paragraph String
 | UnorderedList [String]
 | OrderedList [String]
 | CodeBlock [String]
deriving Show

print :: Show a => a -> IO ()
print = putStrLn . show

class Semigroup a where
 (<>) :: a -> a -> a

x <> (y <> z) = (x <> y) <> z

instance Semigroup [a] where
 (<>) = (++)

https://learn-haskell.blog/print.html#laws
https://learn-haskell.blog/print.html#laws

Unfortunately, the Haskell type system cannot "prove" that instances satisfy these laws, but as a

community, we often shun unlawful instances.

Many data types (together with their respective operations) can form a Semigroup , and instances

don't even have to look similar or have a common analogy/metaphor (and this is true for many

other type classes as well).

Type classes are often just interfaces with laws (or expected behaviours if you will). Approaching

them with this mindset can be very liberating!

To put it differently, type classes can be used to create abstractions - interfaces with

laws/expected behaviours where we don't actually care about the concrete details of the underlying

type, just that it implements a certain API and behaves in a certain way.

Regarding Semigroup , we have previously created a function that looks like <> for our Html EDSL!

We can add a Semigroup instance for our Structure data type and have a nicer API!

Exercise: Please do this and remove the append_ function from the API.

https://learn-haskell.blog/03-html/04-safer_construction.html#appending-htmlstructure
https://learn-haskell.blog/03-html/04-safer_construction.html#appending-htmlstructure

Parsing markup part 02 (Pattern matching)

Maybe

Previously on partial functions, we mentioned that one way to avoid writing partial functions is to

encode the absence of a result using Maybe :

Maybe is a data type from the standard library (named base) for adding an additional value to a

type: the absence of a value. For example, Maybe Bool has three values, two with the Just

constructor to represent regular boolean values (Just True and Just False) and another value,

Nothing to represent the absence of a boolean value.

We can use this to encode the result of head , a function that promises to return the first element of

a list, without creating a partial function:

This way, when the list is empty, we can return Nothing , and when it has at least one element, we

can return Just <first element> . This function can be found in the Data.Maybe module under the

name listToMaybe.

In order to consume values of type Maybe <something> , and other types created with data , we can

use pattern matching.

Pattern Matching

We've already seen pattern matching a few times. It is an incredibly versatile feature of Haskell; we

can use it to do two main things:

1. Deconstruct complex values

2. Control flow

As we've seen when discussing newtypes, we can use case expressions and function definitions to

deconstruct a newtype . Same for data types as well:

data Maybe a
 = Nothing
 | Just a

safeHead :: [a] -> Maybe a

import Data.Word (Word8) -- Word8 is an 8-bit unsigned integer type

-- | A data type representing colors
data Color
 = RGB Word8 Word8 Word8

getBluePart :: Color -> Word8
getBluePart color =
case color of
RGB _ _ blue -> blue

https://learn-haskell.blog/print.html#parsing-markup-part-02-pattern-matching
https://learn-haskell.blog/print.html#parsing-markup-part-02-pattern-matching
https://learn-haskell.blog/print.html#maybe
https://learn-haskell.blog/print.html#maybe
https://hackage.haskell.org/package/base
https://hackage.haskell.org/package/base
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Maybe.html
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Maybe.html
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Maybe.html#v:listToMaybe
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Maybe.html#v:listToMaybe
https://learn-haskell.blog/print.html#pattern-matching
https://learn-haskell.blog/print.html#pattern-matching
https://learn-haskell.blog/03-html/04-safer_construction.html#using-newtypes
https://learn-haskell.blog/03-html/04-safer_construction.html#using-newtypes

In getBluePart we deconstruct a composite value into its part and extract the third component

representing the blue value in a color represented by red, green, and blue components (RGB).

Note that blue is the name we give to the third component, so it will be bound to the right of the

arrow that comes after the pattern. This is similar to a function argument. Also note that _ matches

any value without binding it to a name.

We can also try to match a value with more than one pattern:

It's important to notice a few things here:

1. Patterns can be nested; notice how we deconstructed ansicolor on multiple levels

2. We try to match patterns from the top down; it is possible for patterns to overlap with one

another, and the top one will win

3. If the value we try to match does not match any of the patterns listed, an error will be thrown

at runtime

We can ask GHC to notify us when we accidentally write overlapping patterns, or when we haven't

listed enough patterns to match all possible values, by passing the flag -Wall to ghc or runghc .

My recommendation is to always use -Wall !

As an aside, while it is possible to use pattern matching in function definitions by defining a

function multiple times, I personally don't like that feature very much and I would encourage

you to avoid it, but if you want to use it instead of case expressions, it is possible.

data Brightness
 = Dark
 | Bright

data EightColor
 = Black
 | Red
 | Green
 | Yellow
 | Blue
 | Magenta
 | Cyan
 | White

data AnsiColor
 = AnsiColor Brightness EightColor

ansiColorToVGA :: AnsiColor -> Color
ansiColorToVGA ansicolor =
case ansicolor of
AnsiColor Dark Black ->
RGB 0 0 0

AnsiColor Bright Black ->
RGB 85 85 85

AnsiColor Dark Red ->
RGB 170 0 0

AnsiColor Bright Red ->
RGB 255 85 85

-- and so on

https://fosstodon.org/@suppi/110360105149103689
https://fosstodon.org/@suppi/110360105149103689

Pattern matching on linked lists

Because linked lists have their own special syntax, we also have special syntax for their pattern

match. We can use the same special syntax for creating lists when we pattern match on lists,

replacing the elements of the list with patterns. For example:

Exercises:

1. Create a function isBright :: AnsiColor -> Bool that checks whether a color is bright

2. Use this table to write ansiToUbuntu

3. Create a function isEmpty :: [a] -> Bool that uses listToMaybe to check whether a list is

empty

4. Create a function isEmpty :: [a] -> Bool that doesn't use listToMaybe to check whether a

list is empty

Parsing with rich context

Previously we wrote a parser that separates documents into different paragraphs. With new

features under our belt, we can now remember the exact context we are in (whether it is a text

paragraph, a list, or a code block) and act accordingly!

Let's look again at the parsing code we wrote previously:

safeHead :: [a] -> Maybe a
safeHead list =
case list of
-- Empty list

 [] -> Nothing

-- Cons cell pattern, will match any list with at least one element
 x : _ -> Just x

exactlyTwo :: [a] -> Maybe (a, a)
exactlyTwo list =
case list of
-- Will match a list with exactly two elements

 [x, y] -> Just (x, y)

-- Will match any other pattern
 _ -> Nothing

-- This will also work
exactlyTwoVersion2 :: [a] -> Maybe (a, a)
exactlyTwoVersion2 list =
case list of
-- Will match a list with exactly two elements

 x : y : [] -> Just (x, y)

-- Will match any other pattern
 _ -> Nothing

https://learn-haskell.blog/print.html#pattern-matching-on-linked-lists
https://learn-haskell.blog/print.html#pattern-matching-on-linked-lists
https://learn-haskell.blog/04-markup//03-html/06-escaping_characters.html#linked-lists-briefly
https://learn-haskell.blog/04-markup//03-html/06-escaping_characters.html#linked-lists-briefly
https://en.wikipedia.org/wiki/ANSI_escape_code#3-bit_and_4-bit
https://en.wikipedia.org/wiki/ANSI_escape_code#3-bit_and_4-bit
https://learn-haskell.blog/print.html#parsing-with-rich-context
https://learn-haskell.blog/print.html#parsing-with-rich-context

Previously our context, currentParagraph , was used to group adjacent lines in an accumulative list.

Next, instead of using a [String] type to denote adjacent lines, we can instead use a Structure to

denote the context.

One issue we might have, though, with representing context with the Structure type, is that when

we start parsing, we don't have any context. But we have learned of a way to represent the absence

of a value with Maybe ! So our new context type can be Maybe Structure instead.

Let's rewrite our code above with our new context type:

1. We can now pass Nothing when we don't have a context

2. Unsure what maybeToList does? Hoogle it!

3. We can split this line into two important parts:

parse :: String -> Document
parse = parseLines [] . lines

parseLines :: [String] -> [String] -> Document
parseLines currentParagraph txts =
let

 paragraph = Paragraph (unlines (reverse currentParagraph))
in
case txts of

 [] -> [paragraph]
 currentLine : rest ->

if trim currentLine == ""
then

 paragraph : parseLines [] rest
else

 parseLines (currentLine : currentParagraph) rest

trim :: String -> String
trim = unwords . words

parse :: String -> Document
parse = parseLines Nothing . lines -- (1)

parseLines :: Maybe Structure -> [String] -> Document
parseLines context txts =
case txts of

 [] -> maybeToList context -- (2)
-- Paragraph case

 currentLine : rest ->
let

 line = trim currentLine
in

if line == ""
then

 maybe id (:) context (parseLines Nothing rest) -- (3)
else
case context of

Just (Paragraph paragraph) ->
 parseLines (Just (Paragraph (unwords [paragraph, line]))) rest -- (4)
 _ ->
 maybe id (:) context (parseLines (Just (Paragraph line)) rest)

trim :: String -> String
trim = unwords . words

https://hoogle.haskell.org/
https://hoogle.haskell.org/

1. maybe id (:) context - prepending the context to the rest of the document

2. parseLines Nothing rest - parsing the rest of the document

Let's focus on the first part. We want to prepend context to the rest of the document, but we

can't write context : parseLines Nothing rest because context has the type Maybe

Structure and not Structure , meaning that we might have a Structure but maybe not. If we

do have a Structure to prepend, we wish to prepend it. If not, we want to return the result of

parseLines Nothing rest as is. Try writing this using pattern matching!

The maybe function lets us do the same thing more compactly. It is a function that works

similarly to pattern matching on a Maybe : the third argument to maybe is the value on which

we pattern match, the second argument is a function to apply to the value found in a Just

case, and the first argument is the value to return in case the value we pattern match on is

Nothing . A more faithful translation of maybe id (:) context (parseLines Nothing rest) to

pattern matching would look like this:

Note how the result of this case expression is a function of type Document -> Document , how

we partially apply (:) with structure to create a function that prepends structure , and

how we apply parseLines Nothing rest to the case expression.

This way of encoding pattern matching using functions is fairly common.

Check out the types of id , (:) , and maybe id (:) in GHCi!

4. Hey! Didn't we say that appending String s/lists is slow (which is what unwords does)? Yes, it

is. Because in our Structure data type, a paragraph is defined as Paragraph String and not

Paragraph [String] , we can't use our trick of building a list of lines and then reverse it in the

end.

So what do we do? There are many ways to handle that; one simple way is to create a different

type with the right shape:

Since creating new types in Haskell is cheap, this is a very viable solution.

In this case, I'm going with the approach of not worrying about it too much, because it's a very

local piece of code that can easily be fixed later if needed.

Let's cover more parsing cases; we want to handle headings and lists as well. We can do that by

examining the first characters of a line:

(case context of

Nothing -> id

Just structure -> (:) structure

) (parseLines Nothing rest)

data Context

 = CtxHeading Natural String

 | CtxParagraph [String]

 | CtxUnorderedList [String]

 | CtxOrderedList [String]

 | CtxCodeBlock [String]

https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#v:maybe
https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#v:maybe

Exercise: Add the CodeBlock and OrderedList cases.

Final module

parse :: String -> Document
parse = parseLines Nothing . lines

parseLines :: Maybe Structure -> [String] -> Document
parseLines context txts =
case txts of
-- done case

 [] -> maybeToList context

-- Heading 1 case
 ('*' : ' ' : line) : rest ->
 maybe id (:) context (Heading 1 (trim line) : parseLines Nothing rest)

-- Unordered list case
 ('-' : ' ' : line) : rest ->

case context of
Just (UnorderedList list) ->

 parseLines (Just (UnorderedList (list <> [trim line]))) rest

 _ ->
 maybe id (:) context (parseLines (Just (UnorderedList [trim line])) rest)

-- Paragraph case
 currentLine : rest ->

let
 line = trim currentLine

in
if line == ""
then

 maybe id (:) context (parseLines Nothing rest)
else
case context of

Just (Paragraph paragraph) ->
 parseLines (Just (Paragraph (unwords [paragraph, line]))) rest
 _ ->
 maybe id (:) context (parseLines (Just (Paragraph line)) rest)

trim :: String -> String
trim = unwords . words

https://learn-haskell.blog/print.html#final-module
https://learn-haskell.blog/print.html#final-module

-- Markup.hs

module Markup
 (Document
 , Structure(..)
 , parse
)
where

import Numeric.Natural
import Data.Maybe (maybeToList)

type Document
 = [Structure]

data Structure
 = Heading Natural String
 | Paragraph String
 | UnorderedList [String]
 | OrderedList [String]
 | CodeBlock [String]
deriving (Eq, Show) -- (1)

parse :: String -> Document
parse = parseLines Nothing . lines

parseLines :: Maybe Structure -> [String] -> Document
parseLines context txts =
case txts of
-- done case

 [] -> maybeToList context

-- Heading 1 case
 ('*' : ' ' : line) : rest ->
 maybe id (:) context (Heading 1 (trim line) : parseLines Nothing rest)

-- Unordered list case
 ('-' : ' ' : line) : rest ->

case context of
Just (UnorderedList list) ->

 parseLines (Just (UnorderedList (list <> [trim line]))) rest

 _ ->
 maybe id (:) context (parseLines (Just (UnorderedList [trim line])) rest)

-- Ordered list case
 ('#' : ' ' : line) : rest ->

case context of
Just (OrderedList list) ->

 parseLines (Just (OrderedList (list <> [trim line]))) rest

 _ ->
 maybe id (:) context (parseLines (Just (OrderedList [trim line])) rest)

-- Code block case
 ('>' : ' ' : line) : rest ->

case context of
Just (CodeBlock code) ->

 parseLines (Just (CodeBlock (code <> [line]))) rest

 _ ->
 maybe id (:) context (parseLines (Just (CodeBlock [line])) rest)

-- Paragraph case

How do we know our parser works correctly?

In an earlier chapter, we parsed a few examples of our markup language by hand. Now, we can try

to test our parser by comparing our solutions to our parser. By deriving Eq for our Structure data

type (marked with (1) in "final module" above), we can compare solutions with the == (equals)

operator.

Try it in GHCi! You can read a text file in GHCi using the following syntax:

And then compare with the handwritten example values from the solutions (after adding them to

the module and loading them in GHCi):

In a later chapter, we'll write automated tests for our parser using a testing framework. But before

that, I'd like to glue things together so we'll be able to:

1. Read markup text from a file

2. Parse the text

3. Convert the result to our HTML EDSL

4. Generate HTML code

And also discuss how to work with IO in Haskell while we're at it.

 currentLine : rest ->
let

 line = trim currentLine
in

if line == ""
then

 maybe id (:) context (parseLines Nothing rest)
else
case context of

Just (Paragraph paragraph) ->
 parseLines (Just (Paragraph (unwords [paragraph, line]))) rest
 _ ->
 maybe id (:) context (parseLines (Just (Paragraph line)) rest)

trim :: String -> String
trim = unwords . words

ghci> txt <- readFile "/tmp/sample.txt"

ghci> parse txt == example4

https://learn-haskell.blog/print.html#how-do-we-know-our-parser-works-correctly
https://learn-haskell.blog/print.html#how-do-we-know-our-parser-works-correctly
https://learn-haskell.blog/04-markup/01-data_type.html#exercises
https://learn-haskell.blog/04-markup/01-data_type.html#exercises

Gluing things together

In this chapter, we are going to glue the pieces we built together and build an actual blog generator.

We will:

1. Read markup text from a file

2. Parse the text to a Document

3. Convert the result to our Html EDSL

4. Generate HTML code

5. Write it to a file

While doing so, we will learn:

• How to work with IO

• How to import external libraries to process whole directories and create a simple command-

line interface

https://learn-haskell.blog/print.html#gluing-things-together
https://learn-haskell.blog/print.html#gluing-things-together

Converting Markup to HTML

One key part is missing before we can glue everything together, and that is to convert our Markup

data types to Html .

We'll start by creating a new module and importing both the Markup and the Html modules.

Qualified Imports

This time, we've imported the modules qualified. Qualified imports mean that instead of exposing

the names that we've defined in the imported module to the general module namespace, they now

have to be prefixed with the module name.

For example, parse becomes Markup.parse . If we would've imported Html.Internal qualified,

we'd have to write Html.Internal.el , which is a bit long.

We can also give the module a new name with the as keyword:

And write HI.el instead.

I like using qualified imports because readers do not have to guess where a name comes from.

Some modules are even designed to be imported qualified. For example, the APIs of many container

types, such as maps, sets, and vectors, are very similar. If we want to use multiple containers in a

single module, we pretty much have to use qualified imports so that when we write a function such

as singleton , which creates a container with a single value, GHC will know which singleton

function we are referring to.

Some people prefer to use import lists instead of qualified imports, because qualified names can be

a bit verbose and noisy. I will often prefer qualified imports to import lists, but feel free to try both

solutions and see which fits you better. For more information about imports, see this wiki article.

Converting Markup.Structure to Html.Structure

Converting a markup structure to an HTML structure is mostly straightforward at this point, we need

to pattern match on the markup structure and use the relevant HTML API.

module Convert where

import qualified Markup
import qualified Html

import qualified Html.Internal as HI

https://learn-haskell.blog/print.html#converting-markup-to-html
https://learn-haskell.blog/print.html#converting-markup-to-html
https://learn-haskell.blog/print.html#qualified-imports
https://learn-haskell.blog/print.html#qualified-imports
https://wiki.haskell.org/Import
https://wiki.haskell.org/Import
https://learn-haskell.blog/print.html#converting-markupstructure-to-htmlstructure
https://learn-haskell.blog/print.html#converting-markupstructure-to-htmlstructure

Notice that running this code with -Wall will reveal that the pattern matching is non-exhaustive. This

is because we don't currently have a way to build headings that are not h1 . There are a few ways to

handle this:

• Ignore the warning - this will likely fail at runtime one day, and the user will be sad

• Pattern match other cases and add a nice error with the error function - it has the same

disadvantage above, but will also no longer notify of the unhandled cases at compile time

• Pattern match and do the wrong thing - user is still sad

• Encode errors in the type system using Either , we'll see how to do this in later chapters

• Restrict the input - change Markup.Heading to not include a number but rather specific

supported headings. This is a reasonable approach

• Implement an HTML function supporting arbitrary headings. Should be straightforward to do

Exercises

1. Implement h_ :: Natural -> String -> Structure which we'll use to define arbitrary

headings (such as <h1> , <h2> , and so on).

2. Fix convertStructure using h_ .

Document -> Html

To create an Html document, we need to use the html_ function. This function expects two things:

a Title and a Structure .

For a title, we could just supply it from outside using the file name.

To convert our markup Document (which is a list of markup Structure) to an HTML Structure , we

need to convert each markup Structure and then concatenate them together.

We already know how to convert each markup Structure ; we can use the convertStructure

function we wrote and map . This will provide us with the following function:

convertStructure :: Markup.Structure -> Html.Structure
convertStructure structure =
case structure of
Markup.Heading 1 txt ->
Html.h1_ txt

Markup.Paragraph p ->
Html.p_ p

Markup.UnorderedList list ->
Html.ul_ $ map Html.p_ list

Markup.OrderedList list ->
Html.ol_ $ map Html.p_ list

Markup.CodeBlock list ->
Html.code_ (unlines list)

https://learn-haskell.blog/print.html#exercises-2
https://learn-haskell.blog/print.html#exercises-2
https://learn-haskell.blog/print.html#document---html
https://learn-haskell.blog/print.html#document---html

To concatenate all of the Html.Structure , we could try to write a recursive function. However, we

will quickly run into an issue with the base case: what to do when the list is empty?

We could just provide a dummy Html.Structure that represents an empty HTML structure.

Let's add this to Html.Internal :

Now we can write our recursive function. Try it!

Remember the <> function we implemented as an instance of the Semigroup type class? We

mentioned that Semigroup is an abstraction for things that implements (<>) :: a -> a -> a ,

where <> is associative (a <> (b <> c) = (a <> b) <> c).

It turns out that having an instance of Semigroup and also having a value that represents an

"empty" value is a fairly common pattern. For example, a string can be concatenated, and the empty

string can serve as an "empty" value. And this is actually a well known abstraction called monoid.

Monoids

Actually, "empty" isn't a very good description of what we want, and isn't very useful as an

abstraction. Instead, we can describe it as an "identity" element that satisfies the following laws:

• x <> <identity> = x

• <identity> <> x = x

In other words, if we try to use this "empty" - this identity value, as one argument to <> , we will

always get the other argument back.

For String , the empty string, "" , satisfies this:

This is, of course, true for any value we'd write and not just "world" and "hello".

Actually, if we move out of the Haskell world for a second, even integers with + as the associative

binary operations + (in place of <>) and 0 in place of the identity member form a monoid:

So integers together with the + operation form a semigroup, and together with 0 form a monoid.

We learn new things from this:

1. A monoid is a more specific abstraction over semigroup; it builds on it by adding a new

map convertStructure :: Markup.Document -> [Html.Structure]

empty_ :: Structure
empty_ = Structure ""

"" <> "world" = "world"
"hello" <> "" = "hello"

17 + 0 = 17
0 + 99 = 99

https://learn-haskell.blog/print.html#monoids
https://learn-haskell.blog/print.html#monoids

condition (the existence of an identity member)

2. This abstraction can be useful! We can write a general concatStructure that could work for

any monoid

And indeed, there exists a type class in base called Monoid , which has Semigroup as a super class.

Note: this is a simplified version. The actual is a bit more complicated because of backward

compatibility and performance reasons. Semigroup was actually introduced in Haskell after

Monoid !

We could add an instance of Monoid for our HTML Structure data type:

And now, instead of using our own concatStructure , we can use the library function:

Which could theoretically be implemented as:

Notice that because Semigroup is a super class of Monoid , we can still use the <> function from the

Semigroup class without adding the Semigroup a constraint to the left side of => . By adding the

Monoid a constraint, we implicitly add a Semigroup a constraint as well!

This mconcat function is very similar to the concatStructure function, but this one works for any

Monoid , including Structure ! Abstractions help us identify common patterns and reuse code!

Side note: integers with + and 0 aren't actually an instance of Monoid in Haskell. This is

because integers can also form a monoid with * and 1 ! But there can only be one instance

per type. Instead, two other newtype s exist that provide that functionality, Sum and Product.

See how they can be used in ghci :

class Semigroup a => Monoid a where
 mempty :: a

instance Monoid Structure where
 mempty = empty_

mconcat :: Monoid a => [a] -> a

mconcat :: Monoid a => [a] -> a
mconcat list =
case list of

 [] -> mempty
 x : xs -> x <> mconcat xs

ghci> import Data.Monoid
ghci> Product 2 <> Product 3 -- note, Product is a data constructor
Product {getProduct = 6}
ghci> getProduct (Product 2 <> Product 3)
6
ghci> getProduct $ mconcat $ map Product [1..5]
120

https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#t:Monoid
https://hackage.haskell.org/package/base-4.16.4.0/docs/Prelude.html#t:Monoid
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Monoid.html#t:Sum
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Monoid.html#t:Sum
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Monoid.html#t:Product
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Monoid.html#t:Product

Another abstraction?

We've used map and then mconcat twice now. Surely there has to be a function that unifies this

pattern. And indeed, it is called foldMap , and it works not only for lists but also for any data

structure that can be "folded", or "reduced", into a summary value. This abstraction and type class is

called Foldable.

For a simpler understanding of Foldable , we can look at fold :

mconcat is just a specialized version of fold for lists. And fold can be used for any pair of a data

structure that implements Foldable and a payload type that implements Monoid . This could be []

with Structure , or Maybe with Product Int , or your new shiny binary tree with String as the

payload type. But note that the Foldable type must be of kind * -> * . So, for example Html

cannot be a Foldable .

foldMap is a function that allows us to apply a function to the payload type of the Foldable type

right before combining them with the <> function.

True to its name, it really "maps" before it "folds". You might pause here and think, "this 'map' we

are talking about isn't specific for lists; maybe that's another abstraction?" Yes. It is actually a very

important and fundamental abstraction called Functor . But I think we had enough abstractions for

this chapter. We'll cover it in a later chapter!

Finishing our conversion module

Let's finish our code by writing convert :

Now we have a full implementation and can convert markup documents to HTML:

fold :: (Foldable t, Monoid m) => t m -> m

-- compare with
mconcat :: Monoid m => [m] -> m

foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

-- compare to a specialized version with:
-- - t ~ []
-- - m ~ Html.Structure
-- - a ~ Markup.Structure
foldMap
 :: (Markup.Structure -> Html.Structure)
 -> [Markup.Structure]
 -> Html.Structure

convert :: Html.Title -> Markup.Document -> Html.Html
convert title = Html.html_ title . foldMap convertStructure

https://learn-haskell.blog/print.html#another-abstraction
https://learn-haskell.blog/print.html#another-abstraction
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Foldable.html#v:foldMap
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Foldable.html#v:foldMap
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Foldable.html#v:foldMap
https://learn-haskell.blog/print.html#finishing-our-conversion-module
https://learn-haskell.blog/print.html#finishing-our-conversion-module

Summary

We learned about:

• Qualified imports

• Ways to handle errors

• The Monoid type class and abstraction

• The Foldable type class and abstraction

Next, we are going to glue our functionality together and learn about I/O in Haskell!

-- Convert.hs
module Convert where

import qualified Markup
import qualified Html

convert :: Html.Title -> Markup.Document -> Html.Html
convert title = Html.html_ title . foldMap convertStructure

convertStructure :: Markup.Structure -> Html.Structure
convertStructure structure =
case structure of
Markup.Heading n txt ->
Html.h_ n txt

Markup.Paragraph p ->
Html.p_ p

Markup.UnorderedList list ->
Html.ul_ $ map Html.p_ list

Markup.OrderedList list ->
Html.ol_ $ map Html.p_ list

Markup.CodeBlock list ->
Html.code_ (unlines list)

https://learn-haskell.blog/print.html#summary-2
https://learn-haskell.blog/print.html#summary-2

Working with IO

In previous chapters, we were able to build a parser from a text string to a Haskell representation of

our markup language, and we built an EDSL for easy writing of HTML code. However, our program is

still not useful to other users because we did not make this functionality accessible via some sort of

user interface.

In our program, we'd like to take user input and then convert it to HTML. There are many ways to

design this kind of interface, for example:

• Get text input via the standard input and output HTML via the standard output

• Receive two file names as command-line arguments, read the contents of the first one, and write

the output to the second one

• Ask for fancier command-line arguments parsing and prefix the file names with flags indicating

what they are

• Some fancy GUI interface

• Combination of all of the above

To make this interesting, we will start with the following interface:

1. If the user calls the program without arguments, we will read from the standard input, and

write to the standard output

2. If the user calls the program with two arguments, the first one will be the input file name, and

the second one will be the output file name

3. If the output file already exists, we'll ask the user if they want to overwrite the file

4. On any other kind of input, we'll print a generic message explaining the proper usage

In a later chapter, we will add a fancier command-line interface using a library, and also read whole

directories in addition to single files.

But first, we need to learn about I/O in Haskell, what makes it special, and why it's different from

other programming languages.

Purely functional

Originally, Haskell was designed as an open standard functional programming language with non-

strict semantics, to serve as a unifying language for future research in functional language design.

In GHC Haskell, we use a lazy evaluation strategy to implement non-strict semantics (We've talked

about laziness before).

The requirement for non-strict semantics raises interesting challenges: How do we design a

language that can do more than just evaluate expressions, how do we model interaction with the

outside world, how do we do I/O?

The challenge with doing I/O operations in a language with a lazy evaluation strategy is that as

programs grow larger, the order of evaluation becomes less trivial to figure out. Consider this

hypothetical code example (which won't actually type-check in Haskell, we'll see why soon):

https://learn-haskell.blog/print.html#working-with-io
https://learn-haskell.blog/print.html#working-with-io
https://learn-haskell.blog/print.html#purely-functional
https://learn-haskell.blog/print.html#purely-functional
https://learn-haskell.blog/04-markup/02-parsing_01.html#laziness
https://learn-haskell.blog/04-markup/02-parsing_01.html#laziness

This hypothetical program will read 2 integers from the standard input, and then will subtract the

second one (+2) from the first one (+1), or so we would expect if this was a strict language. In a strict

language, we expect the order of operations to happen from the top down.

But in a lazy language, we don't evaluate an expression until it is needed, and so neither result1

nor result2 are evaluated until we wish to print the result of subtracting one from the other. And

then, when we try to evaluate - , it evaluates the two arguments from left to right, so we first

evaluate result2 .

Evaluating result2 with substitution means replacing occurrences of n with the input 2 , and then

evaluate the top-level function (+), which is a primitive function. We then evaluate its arguments,

readIntFromStdin and then n ; at this point we are reading the first integer from the stdin.

After calculating the result, we can move to evaluate result1 , which will read the second integer from

stdin. This is the complete opposite of what we wanted!

Issues like these make lazy evaluation hard to work within the presence of side effects - when the

evaluation of an expression can affect or be affected by the outside world, this includes reading/writing

from mutable memory or performing I/O operations.

We call functions that have side-effects, such as addWithInput , impure functions. And an

unfortunate consequence of impure functions is that they can return different results even when

they take the same input.

The presence of impure functions makes it harder for us to reason about lazy evaluation, and also

messes up our ability to use equational reasoning to understand programs.

Therefore, in Haskell, it was decided to only allow pure functions and expressions - ones that have

no side effects. Pure functions will always return the same output (given the same input) and

evaluating pure expressions is deterministic.

But now, how can we do I/O operations? There are many possible solutions.

For Haskell, it was decided to design an interface with an accompanied type called IO . IO 's

interface will force a distinction from non-I/O expressions and will also require that in order to

combine multiple IO operations, we will have to specify the order of the operations.

IO

IO is an opaque type, like our Html type, in which we hide its internal representation from the user

behind an interface. But in this case, IO is a built-in type and its internals are hidden by the Haskell

language rather than a module.

addWithInput :: Int -> Int
addWithInput n = readIntFromStdin + n

main =
let

 result1 = addWithInput 1
 result2 = addWithInput 2
in

 print (result2 - result1)

https://learn-haskell.blog/print.html#io
https://learn-haskell.blog/print.html#io

Similar to Maybe , IO has a payload type that represents the result of an IO operation. When there

isn't a meaningful result, we use the unit type, () (which only has one value: ()) to represent that.

Here are a few IO operations and functions that return IO operations:

Notice that each function returns an IO <something> , but what does that mean?

The meaning behind IO a is that it is a description of a program (or subroutine) that, when executed,

will produce some value of type a , and may do some I/O effects during execution.

Executing an IO a is different from evaluating it. Evaluating an IO a expression is pure - the

evaluation will always reduce to the same description of a program. This helps us keep purity and

equational reasoning!

The Haskell runtime will execute the entry point to the program (the expression main that must have

the type IO ()). For our IO operation to also run - it has to be combined into the main expression -

let's see what that means.

Combining IO expressions

Like our Html.Structure type, the IO interface provides combinators for composing small IO

operations into bigger ones. This interface also ensures that the order of operations is well-defined!

Note that, just like the <> we've defined for Html.Structure , the combinators for IO are

implemented as type-class instances rather than specialized variants (for example our append_

function was a specialized version of <> tailored only for Structure).

In this section, I will introduce specialized type signatures rather than generalized ones, because I

think it'll be easier to digest, but we'll talk about the generalized versions later.

>>=

Our first combinator is >>= (pronounced bind), and is the most useful of the bunch:

This combinator takes two arguments, the first is an IO operation, and the second is a function that

takes as input the result of the first IO operation and returns a new IO b , which is the final result.

Here are a few examples using the functions we described above:

1. Echo

putStrLn :: String -> IO ()

getLine :: IO String

getArgs :: IO [String]

lookupEnv :: String -> IO (Maybe String)

writeFile :: FilePath -> String -> IO ()

(>>=) :: IO a -> (a -> IO b) -> IO b

https://learn-haskell.blog/print.html#combining-io-expressions
https://learn-haskell.blog/print.html#combining-io-expressions
https://learn-haskell.blog/print.html#
https://learn-haskell.blog/print.html#

We are reading a line from the standard input on the left of >>= , we receive the input to the

right of >>= as an argument to the lambda function, and then write it to the standard output in

the body of the lambda function. >>= 's role here is to pass the result of the IO operation on

the left to the function returning an IO operation on the right.

Notice how >>= defines an order of operations - from left to right.

The type of each sub-expression here is:

◦ Question: what is the type of the whole expression?

Also, note that this example can be written in a more concise manner in point-free style

getLine >>= putStrLn .

2. Appending two inputs

This subroutine combines multiple operations together; it reads two lines from the standard

input and prints a greeting. Note that:

◦ Using >>= defines the order of operation from left to right

◦ Because of the scoping rules in Haskell, honorific will be in scope in the body of the

function for which it is its input, including the most inner function

This is a bit hard to read, but we can remove the parenthesis and add indentation to make it a

bit easier to read:

Let's see a few more combinators!

*> and >>

*> and >> have the same type signature for IO and mean the same thing. In fact, *> is a slightly

getLine >>= (\line -> putStrLn line)

getLine :: IO String

putStrLn :: String -> IO ()

(>>=) :: IO String -> (String -> IO ()) -> IO ()

line :: String

getLine >>= (\honorific -> getLine >>= (\name -> putStrLn ("Hello " ++ honorific

++ " " ++ name)))

getLine >>= \honorific ->

 getLine >>= \name ->

 putStrLn ("Hello " ++ honorific ++ " " ++ name)

(*>) :: IO a -> IO b -> IO b
(>>) :: IO a -> IO b -> IO b

https://learn-haskell.blog/print.html#-and
https://learn-haskell.blog/print.html#-and

more generalized version of >> and can always be used instead of >> , which only still exists to

avoid breaking backward compatibility.

*> for IO means run the first IO operation, discard the result then run the second operation. It can

be implemented using >>= :

This combinator is useful when we want to run several IO operations one after the other that might

not return anything meaningful, such as putStrLn :

pure and return

like *> and >> , pure is a more general version of return . pure also has the advantage of not

having a resemblance to an unrelated keyword in other languages.

Remember that we said IO a is a description of a program that, when executed, will produce some

value of type a and may do some I/O effects during execution?

With pure , we can build an IO a that does no I/O and will produce a specific value of type a , the

one we supply to pure !

This function is useful when we want to do some uneffectful computation that depends on IO .

For example:

Trying to return just True or False here wouldn't work because of the type of >>= :

The right side of >>= in our code example (\answer -> case ...) must be of type String -> IO

Bool . This is because:

1. getLine :: IO String , so the a in the type signature of >>= should be the same as String

in this instance, and

2. confirm :: IO Bool , so b should be Bool

a *> b = a >>= _ -> b

putStrLn "hello" *> putStrLn "world"

pure :: a -> IO a

confirm :: IO Bool
confirm =
 putStrLn "Are you sure? (y/n)" *>
 getLine >>= \answer ->

case answer of
"y" -> pure True
"n" -> pure False

 _ ->
 putStrLn "Invalid response. use y or n" *>
 confirm

(>>=) :: IO a -> (a -> IO b) -> IO b

https://learn-haskell.blog/print.html#pure-and-return
https://learn-haskell.blog/print.html#pure-and-return

fmap and <$>

<$> is the infix version of fmap . Use it at your discretion.

What if we want a function that reads a line from stdin and returns it with ! at the end? We could

use a combination of >>= and pure :

The pattern is unified to the fmap function:

fmap applies a function to the value to be returned from the IO operation, also known as

"mapping" over it.

(By the way, Have you noticed the similarities between fmap and map :: (a -> b) -> [a] ->

[b] ?)

Summary

Here's a list of IO combinators we ran into:

IO is first class

The beauty of IO is that it's a completely first-class construct in the language, and is not really

different from Maybe , Either , or Structure . We can pass it to functions, put it in a container, etc.

Remember that it represents a description of a program, and without combining it into main in

some way won't actually do anything. It is just a value!

Here's an example of a function that takes IO actions as input:

fmap :: (a -> b) -> IO a -> IO b

getLine >>= \line -> pure (line ++ "!")

fmap (\line -> line ++ "!") getLine

-- chaining IO operations: passing the *result* of the left IO operation
-- as an argument to the function on the right.
-- Pronounced "bind".
(>>=) :: IO a -> (a -> IO b) -> IO b

-- sequence two IO operations, discarding the payload of the first.
(*>) :: IO a -> IO b -> IO b

-- "lift" a value into IO context, does not add any I/O effects.
pure :: a -> IO a

-- "map" (or apply a function) over the payload value of an IO operation.
fmap :: (a -> b) -> IO a -> IO b

https://learn-haskell.blog/print.html#fmap-and-
https://learn-haskell.blog/print.html#fmap-and-
https://learn-haskell.blog/print.html#summary-3
https://learn-haskell.blog/print.html#summary-3
https://learn-haskell.blog/print.html#io-is-first-class
https://learn-haskell.blog/print.html#io-is-first-class

And how it can be used:

Notice how putStrLn "IO is actually pretty awesome" isn't executed right away, but only if it is

what whenIO returns, and in turn, is combined with *> as part of the main expression.

Getting out of IO?

What we've seen above has great consequences for the Haskell language. In our Html type, we had

a function render :: Html -> String that could turn an Html into a string value.

In Haskell, there is no way to implement a function such as execute :: IO a -> a that preserves

purity and equational reasoning!

Also, IO is opaque. It does not let us examine it. So we are really bound to what the Haskell API for

IO allows us to do.

This means that we need to think about using IO differently!

In Haskell, once we get into IO , there is no getting out. The only thing we can do is to build bigger IO

computations by combining it with more IO computations.

We also can't use IO a in place of an a . For example, we can't write getLine ++ "!" because ++

expects both sides to be String , but getLine 's type is IO String . The types do not match! We

have to use fmap , and the return type must be IO String , as we've seen before.

In Haskell, we like to keep IO usage minimal, and we like to push it to the edges of the program.

This pattern is often called Functional core, imperative shell.

Functional core, imperative shell

In our blog generator program, we want to read a file, parse it, convert it to HTML, and then print the

result to the console.

In many programming languages, we might interleave reading from the file with parsing, and writing

to the file with the HTML conversion. But we don't mix these here. Parsing operates on a String

value rather than some file handle, and Html is being converted to a String rather than being

written to the screen directly.

whenIO :: IO Bool -> IO () -> IO ()
whenIO cond action =
 cond >>= \result ->

if result
then action
else pure ()

main :: IO ()
main =
 putStrLn "This program will tell you a secret" *>
 whenIO confirm (putStrLn "IO is actually pretty awesome") *>
 putStrLn "Bye"

https://learn-haskell.blog/print.html#getting-out-of-io
https://learn-haskell.blog/print.html#getting-out-of-io
https://learn-haskell.blog/print.html#functional-core-imperative-shell
https://learn-haskell.blog/print.html#functional-core-imperative-shell

This approach of separating IO and pushing it to the edge of the program gives us a lot of flexibility.

These functions without IO are easier to test and examine (because they are guaranteed to have

deterministic evaluation!), and they are more modular and can work in many contexts (reading from

stdin, reading from a network socket, writing to an HTTP connection, and more).

This pattern is often a good approach for building Haskell programs, especially batch programs.

Building a blog generator

We'd like to start building a blog generator, and we want to have the following interface:

1. If the user calls the program without arguments, we will read from the standard input, and

write to the standard output

2. If the user calls the program with two arguments, the first one will be the input file name, and

the second one will be the output file name

3. If the output file already exists, we'll ask the user if they want to overwrite the file

4. On any other kind of input, we'll print a generic message explaining the proper usage

We are going to need a few functions:

And the following imports:

We don't need to add the following import because Prelude already imports these functions for us:

Exercises

1. Implement a function process :: Title -> String -> String which will parse a document

to markup, convert it to HTML, and then render the HTML to a string.

2. Try implementing the "imperative shell" for our blog generator program. Start with main ,

pattern match on the result of getArgs , and decide what to do. Look back at the examples

above for inspiration.

getArgs :: IO [String] -- Get the program arguments

getContents :: IO String -- Read all of the content from stdin

readFile :: FilePath -> IO String -- Read all of the content from a file

writeFile :: FilePath -> String -> IO () -- Write a string into a file

doesFileExist :: FilePath -> IO Bool -- Checks whether a file exists

import System.Directory (doesFileExist)
import System.Environment (getArgs)

-- imported by Prelude
import System.IO (getContents, readFile, writeFile)

https://learn-haskell.blog/print.html#building-a-blog-generator
https://learn-haskell.blog/print.html#building-a-blog-generator
https://learn-haskell.blog/print.html#exercises-3
https://learn-haskell.blog/print.html#exercises-3

Do notation

While using >>= to chain IO actions is manageable, Haskell provides an even more convenient

syntactic sugar called do notation which emulates imperative programming.

A do block starts with the do keyword and continues with one or more "statements" which can be

one of the following:

1. An expression of type IO () , such as:

◦ putStrLn "Hello"

◦ if True then putStrLn "Yes" else putStrLn "No"

2. A let block, such as

◦ let x = 1

◦ or multiple let declarations:

Note that we do not write the in here.

3. A binding <variable> <- <expresion> , such as

And the last "statement" must be an expression of type IO <something> - this will be the result type

of the do block.

These constructs are desugared (translated) by the Haskell compiler to:

1. <expression> *> ,

2. let ... in and

3. <expression> >>= \<variable>

respectively.

For example:

Is just syntactic sugar for:

let

 x = 1

 y = 2

line <- getLine

greeting :: IO ()
greeting = do
 putStrLn "Tell me your name."
let greet name = "Hello, " ++ name ++ "!"

 name <- getLine
 putStrLn (greet name)

greeting :: IO ()
greeting =
 putStrLn "Tell me your name." *>

let
 greet name = "Hello, " ++ name ++ "!"

in
 getLine >>= \name ->
 putStrLn (greet name)

https://learn-haskell.blog/print.html#do-notation
https://learn-haskell.blog/print.html#do-notation

It's important to note the difference between let and <- (bind). let is used to give a new name to

an expression that will be in scope for subsequent lines, and <- is used to bind the result a in an

IO a action to a new name which will be in scope for subsequent lines.

code operator
type of the

left side

type of the

right side
comment

Both sides are interchangeable

We just create a new name for

getLine

Technically <- is not an operator,

but just a syntactic sugar for >>= +

lambda, where we bind the result of

the computation to a variable

Do notation is very very common and is often preferable to using >>= directly.

Exercises

1. Translate the examples in this chapter to do notation.

2. Translate our glue code for the blog generator to do notation.

Summary

In this chapter, we discussed what "purely functional" means, where the initial motivation for being

purely functional comes from, and how Haskell's I/O interface allows us to create descriptions of

programs without breaking purity.

We have also achieved a major milestone. With this chapter, we have implemented enough pieces to

finally run our program on a single document and get an HTML-rendered result!

However, our command-line interface is still sub-par. We want to render a blog with multiple articles,

create an index page, and more. We still have more to do to be able to call our program a blog

generator.

Let's keep going!

let
gretting =
"hello"

= String String

let
mygetline =
getLine

=
IO
String

IO
String

name <-
getLine

<- String
IO
String

https://learn-haskell.blog/print.html#exercises-4
https://learn-haskell.blog/print.html#exercises-4
https://learn-haskell.blog/print.html#summary-4
https://learn-haskell.blog/print.html#summary-4

Defining a project description

Up until now, we've only used base and the libraries included with GHC. Because of that, we didn't

really need to do anything fancier than runghc to run our program. However, we want to start using

external libraries not included with GHC in our programs.

External packages can be downloaded from Hackage - Haskell's central package archive, Stackage - a

subset of Hackage packages known to work together or even from remote git repositories. Usually,

Haskellers use a package manager to download and manage packages for different projects. The

most popular package managers for Haskell are cabal and stack.

A major difference between the two is their philosophy. cabal tries to be a more minimalist tool

that handles building Haskell projects, doing package management using the whole of Hackage, and

uses complicated algorithms to make sure packages work together. stack tries to be a more

maximalistic tool that handles installing the right GHC for each project, provides integration with

external tools like hoogle, and lets the user choose which 'set' of packages (including their versions)

they want to use.

If you've installed Haskell using GHCup, you most likely have cabal installed. If you've installed

Haskell using stack, well, you have stack installed. Check the haskell.org downloads page if that's

not the case.

Creating a project

Using external packages can be done in multiple ways. For quick experimentation, we can just ask

stack or cabal to build or even run our program with external packages. But as programs get larger,

use more dependencies, and require more functionality, it is better to create a project description

for our programs and libraries.

The project description is done in a cabal file. We can ask cabal or stack to generate one for us using

cabal init --libandexe or stack new , along with many other files, but we will likely need to edit

the file by hand later. For now, let's just paste an initial example in hs-blog.cabal and edit it.

https://learn-haskell.blog/print.html#defining-a-project-description
https://learn-haskell.blog/print.html#defining-a-project-description
https://downloads.haskell.org/ghc/9.2.7/docs/html/users_guide/9.2.7-notes.html#included-libraries
https://downloads.haskell.org/ghc/9.2.7/docs/html/users_guide/9.2.7-notes.html#included-libraries
https://hackage.haskell.org/
https://hackage.haskell.org/
https://www.stackage.org/
https://www.stackage.org/
https://cabal.readthedocs.io/
https://cabal.readthedocs.io/
https://haskellstack.org/
https://haskellstack.org/
https://www.haskell.org/downloads/
https://www.haskell.org/downloads/
https://learn-haskell.blog/print.html#creating-a-project
https://learn-haskell.blog/print.html#creating-a-project
https://gilmi.me/blog/post/2021/08/14/hs-core-tools#using-external-packages-in-ghci
https://gilmi.me/blog/post/2021/08/14/hs-core-tools#using-external-packages-in-ghci
https://gilmi.me/blog/post/2021/08/14/hs-core-tools#using-external-packages-in-ghci
https://gilmi.me/blog/post/2021/08/14/hs-core-tools#using-external-packages-in-ghci

Let's break it down to a few parts, the package metadata, common settings, library and executable.

Package metadata

The first part should be fairly straightforward from the comments, maybe except for:

• cabal-version : Defines which cabal versions can build this project. We've specified 2.4 and

above. More info on different versions.

• name : The name of your library and package. Must match with the .cabal filename. Usually

starts with a lowercase. Check if your package name is already taken on Hackage.

• version : Some Haskell packages use semver, most use PvP.

• license : Most Haskell packages use BSD-3-Clause. Neil Mitchell blogged about this. You can

find more licenses if you'd like at choosealicense.com.

• extra-doc-files : Include extra doc files here, such as README or CHANGELOG .

cabal-version: 2.4

name: name should match with <name>.cabal
version: version should use PvP
synopsis: Synopsis will appear in the hackage package listing and search
description: The description will appear at the top of a library
homepage: Homepage url
bug-reports: issue-tracker url
license: License name
license-file: License file
author: Author name
maintainer: Maintainer email
category: Hackage categories, separated by commas
extra-doc-files:
 README.md

common common-settings
 default-language: Haskell2010
 ghc-options:
 -Wall

library
 import: common-settings
 hs-source-dirs: src
 build-depends:
 base
 , directory
 exposed-modules:
 HsBlog
 HsBlog.Convert
 HsBlog.Html
 HsBlog.Html.Internal
 HsBlog.Markup
 -- other-modules:

executable hs-blog-gen
 import: common-settings
 hs-source-dirs: app
 main-is: Main.hs
 build-depends:
 base
 , <package-name>
 ghc-options:
 -O

https://learn-haskell.blog/05-glue/03-project.html#package-metadata
https://learn-haskell.blog/05-glue/03-project.html#package-metadata
https://learn-haskell.blog/05-glue/03-project.html#common-settings
https://learn-haskell.blog/05-glue/03-project.html#common-settings
https://learn-haskell.blog/05-glue/03-project.html#library
https://learn-haskell.blog/05-glue/03-project.html#library
https://learn-haskell.blog/05-glue/03-project.html#executable
https://learn-haskell.blog/05-glue/03-project.html#executable
https://learn-haskell.blog/print.html#package-metadata
https://learn-haskell.blog/print.html#package-metadata
https://cabal.readthedocs.io/en/stable/file-format-changelog.html
https://cabal.readthedocs.io/en/stable/file-format-changelog.html
https://hackage.haskell.org/packages/search?terms=name
https://hackage.haskell.org/packages/search?terms=name
https://semver.org/
https://semver.org/
https://pvp.haskell.org/
https://pvp.haskell.org/
https://choosealicense.com/licenses/bsd-3-clause/
https://choosealicense.com/licenses/bsd-3-clause/
https://neilmitchell.blogspot.com/2018/08/licensing-my-haskell-packages.html
https://neilmitchell.blogspot.com/2018/08/licensing-my-haskell-packages.html
https://choosealicense.com/
https://choosealicense.com/

Let's fill this with the metadata of our project:

Common settings

Cabal package descriptions can include multiple "targets": libraries, executables, and test suites.

Since Cabal 2.2, we can use common stanzas to group settings to be shared between different

targets, so we don't have to repeat them for each target.

In our case, we've created a new common stanza (or block) called common-settings and defined the

default language (Haskell has two standards, 98 and 2010), and instructed GHC to compile with

-Wall .

Later, in our targets' descriptions, we can add import: common-settings , and all of these settings

will be automatically added.

Library

In a library target, we define:

• The settings with which to build the library (in this case, we just import common-settings)

• The directory in which the source files can be found

• The packages we require to build the library

• The modules exposed from the library and can be used by others

• The modules not exposed from the library and which cannot be used by others; these could be

any module you don't wish to export, such as an internal utility functions module. In our case,

we don't have anything like this, so we commented out the other-modules label.

cabal-version: 2.4

name: hs-blog
version: 0.1.0.0
synopsis: A custom blog generator from markup files
description: This package provides a static blog generator
 from a custom markup format to HTML.
 It defines a parser for this custom markup format
 as well as an html pretty printer EDSL.

 It is used as the example project in the online book
 'Learn Haskell Blog Generator'. See the README for
 more details.
homepage: https://github.com/soupi/learn-haskell-blog-generator
bug-reports: https://github.com/soupi/learn-haskell-blog-generator/issues
license: BSD-3-Clause
license-file: LICENSE.txt
author: Gil Mizrahi
maintainer: gilmi@posteo.net
category: Learning, Web
extra-doc-files:
 README.md

common common-settings
 default-language: Haskell2010
 ghc-options:
 -Wall

https://learn-haskell.blog/print.html#common-settings
https://learn-haskell.blog/print.html#common-settings
https://cabal.readthedocs.io/en/stable/cabal-package.html#common-stanzas
https://cabal.readthedocs.io/en/stable/cabal-package.html#common-stanzas
https://learn-haskell.blog/print.html#library
https://learn-haskell.blog/print.html#library

Note that it is common to specify version bounds for packages. Version bounds specify which

package versions this library works with. These can also be generated using cabal with the cabal gen-

bounds command.

Also, note that we've added an additional hierarchy for our modules and defined a different source

directory (src). This means we will need to move the files around a bit and change the module

name in each file and the import statements. This is to avoid conflict with other packages that a

user might import.

Exercise: Do this now.

Executable

We have separated our code into two sections: a library and an executable; why?

First, libraries can be used by others. If we publish our code and someone wants to use it and build

upon it, they can. Executables can't be imported by other projects. Second, we can write unit tests

for libraries. It is usually beneficial to write most, if not all, of our logic as a library, and provide a thin

executable over it.

Executables' descriptions are very similar to libraries; here, we define:

• The name of the executable

• Where the source directory for this application is

• Which file is the 'Main' file

• Import our library, which is named hs-blog

• Additional flags for GHC, e.g., -O to compile with optimizations

We can write many executables descriptions. In this case, we only have one.

library
 import: common-settings
 hs-source-dirs: src
 build-depends:
 base
 , directory
 exposed-modules:
 HsBlog
 HsBlog.Convert
 HsBlog.Html
 HsBlog.Html.Internal
 HsBlog.Markup
 -- other-modules:

executable hs-blog-gen
 import: common-settings
 hs-source-dirs: app
 main-is: Main.hs
 build-depends:
 base
 , hs-blog
 ghc-options:
 -O

https://learn-haskell.blog/print.html#executable
https://learn-haskell.blog/print.html#executable

Exercise: Add a new file: app/Main.hs which imports HsBlog and runs main .

Test-suites

test-suite defines a target for running package tests. We will get back to it in a later chapter.

https://learn-haskell.blog/print.html#test-suites
https://learn-haskell.blog/print.html#test-suites

Our complete .cabal file

We'll also add a README.md file and a LICENSE.txt file:

▸ README.md

▸ LICENSE.txt

cabal-version: 2.4

name: hs-blog
version: 0.1.0.0
synopsis: A custom blog generator from markup files
description: This package provides a static blog generator
 from a custom markup format to HTML.
 It defines a parser for this custom markup format
 as well as an html pretty printer EDSL.

 It is used as the example project in the online book
 'Learn Haskell Blog Generator'. See the README for
 more details.
homepage: https://github.com/soupi/learn-haskell-blog-generator
bug-reports: https://github.com/soupi/learn-haskell-blog-generator/issues
license: BSD-3-Clause
license-file: LICENSE.txt
author: Gil Mizrahi
maintainer: gilmi@posteo.net
category: Learning, Web
extra-doc-files:
 README.md

common common-settings
 default-language: Haskell2010
 ghc-options:
 -Wall

library
 import: common-settings
 hs-source-dirs: src
 build-depends:
 base
 , directory
 exposed-modules:
 HsBlog
 HsBlog.Convert
 HsBlog.Html
 HsBlog.Html.Internal
 HsBlog.Markup
 -- other-modules:

executable hs-blog-gen
 import: common-settings
 hs-source-dirs: app
 main-is: Main.hs
 build-depends:
 base
 , hs-blog
 ghc-options:
 -O

https://learn-haskell.blog/print.html#our-complete-cabal-file
https://learn-haskell.blog/print.html#our-complete-cabal-file

cabal.project and stack.yaml

The cabal.project and stack.yaml files are used by cabal and stack respectively to add additional

information on how to build the package. While cabal.project isn't necessary to use cabal ,

stack.yaml is necessary in order to use stack , so we will cover it briefly.

There are two important fields a stack.yaml file must have:

• resolver : Describes which snapshot to use for packages and ghc version. We will choose the

latest (at time of writing) on the lts branch: lts-18.22 . Visit this link to find out which

packages this snapshot includes, what their versions are, and which GHC version is used with

this snapshot

• packages : Describes the location of packages we plan to build. In our case we have only one,

and it can be found in the current directory

We'll add stack.yaml to our project directory:

For additional options and configurations, please consult the relevant user guides.

Usage

Now, instead of manually running runghc Main.hs , we will use either stack or cabal to build and

run our program and package (I mostly use stack, but it's up to you).

For cabal:

Building the project - on the first run, cabal will download the package dependencies and use the

GHC on PATH to build the project.

Cabal caches packages between projects, so if a new project uses the same packages with the same

versions (and the same flag settings), they will not need to be reinstalled.

In older versions of cabal, packages could be installed globally or in sandboxes. In each

sandbox (and globally), there could only be one version of a package installed, and users would

usually create different sandboxes for different projects without caching packages between

projects.

With the new build system implementation, multiple versions of the same package can be

installed globally, and for each project, cabal will (try to) choose a specific version for each

package dependency such that they all work together without needing sandboxing. This

change helps us increase sharing of built packages while avoiding conflicts and manual

handling of sandboxes.

resolver: lts-18.22

packages:
- .

https://learn-haskell.blog/print.html#cabalproject-and-stackyaml
https://learn-haskell.blog/print.html#cabalproject-and-stackyaml
https://cabal.readthedocs.io/en/stable/cabal-project.html
https://cabal.readthedocs.io/en/stable/cabal-project.html
https://docs.haskellstack.org/en/stable/yaml_configuration/#project-specific-config
https://docs.haskellstack.org/en/stable/yaml_configuration/#project-specific-config
https://www.stackage.org/lts-18.22
https://www.stackage.org/lts-18.22
https://learn-haskell.blog/print.html#usage
https://learn-haskell.blog/print.html#usage
https://learn-haskell.blog/print.html#for-cabal
https://learn-haskell.blog/print.html#for-cabal

A few important commands we should be familiar with:

update fetches information from remote package repositories (specifically Hackage unless specified

otherwise) and updates the local package index, which includes various information about available

packages, such as their names, versions, and dependencies.

cabal update is usually the first command to run before fetching package dependencies.

build compiles the various targets (such as library and executable s). It will also fetch and install

the package dependencies when they're not already installed.

When building executables, cabal build will report where the executable has been created, and it

is also possible to find the path to the executable using cabal exec -- which hs-blog-gen .

run Can be used to compile and then run a target (in our case our executable which we named

hs-blog-gen). We separate arguments passed to cabal and arguments passed to our target

program with -- .

repl runs ghci in the context of the target (in our case our library which we named hs-blog) -

it will load the target's package dependencies and modules to be available in ghci .

clean Deletes the build artifacts that we built.

There are more interesting commands we could use, such as cabal freeze , to generate a file which

records the packages versions and flags we used to build this project, and cabal sdist to bundle

the project source to a package tarball which can be uploaded to Hackage. If you'd like to learn

more, visit the Cabal user guide.

For stack:

Building the project - on the first run, stack will install the right GHC for this project which is specified

by the resolver field in the stack.yaml file, download the package dependencies, and compile the

project.

Stack caches these installations between projects that use the same resolver, so future projects with

the same resolver and future runs of this project won't require reinstallation. This approach is kind

of a middle ground between full packages sharing and sandboxes.

Let's look at the (somewhat) equivalent commands for Stack:

cabal update

cabal build

cabal run hs-blog-gen -- <program arguments>

cabal repl hs-blog

cabal clean

stack build

https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-update
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-update
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-update
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-build
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-build
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-build
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-run
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-run
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-run
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-repl
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-repl
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-repl
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-clean
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-clean
https://cabal.readthedocs.io/en/stable/cabal-commands.html#cabal-clean
https://cabal.readthedocs.io/en/stable/cabal-commands.html
https://cabal.readthedocs.io/en/stable/cabal-commands.html
https://learn-haskell.blog/print.html#for-stack
https://learn-haskell.blog/print.html#for-stack

build will compile the project as described above - installing GHC and package dependencies if they

are not installed.

When building executables, stack build will report where the executable has been created, and it

is also possible to find the path to the executable using stack exec -- which hs-blog-gen .

exec will run the executable passing the program arguments to our executable.

ghci runs ghci in the context of our library hs-blog - loading the library modules and packages.

clean cleans up build artifacts.

The Stack user guide contains more information about how stack works and how to use it effectively.

Build artifacts

Both stack and cabal create build artifacts that we will not want to track using our version control.

These build artifacts are found in the dist , dist-newstyle and .stack-work directories. We can

add these to a .gitignore file (or similar for other version control programs) to ignore them:

Finding packages

Finding packages isn't a very straightforward process at the moment. People have written on how

they choose packages, recommendation lists, books, and more.

My suggestion is:

• Search for a tutorial on something you'd like to do, and see which packages come up

• Use the download amount on Hackage as an indication of package popularity

• Use Stackage package synopses to locate a relevant package

• Check social network channels for recommendations, but know that sometimes people tend to

recommend inappropriate solutions and packages that might be too complicated or still

experimental

It's also important to note the amount of dependencies a package has. Adding many dependencies

will affect compilation time and code size. And it can sometimes be a good thing to consider when

comparing packages or considering whether a package is needed at all.

stack exec hs-blog-gen -- <program arguments>

stack ghci hs-blog

stack clean

dist
dist-newstyle
.stack-work

https://docs.haskellstack.org/en/stable/build_command/#build-command
https://docs.haskellstack.org/en/stable/build_command/#build-command
https://docs.haskellstack.org/en/stable/build_command/#build-command
https://docs.haskellstack.org/en/stable/GUIDE/#stack-exec
https://docs.haskellstack.org/en/stable/GUIDE/#stack-exec
https://docs.haskellstack.org/en/stable/GUIDE/#stack-exec
https://docs.haskellstack.org/en/stable/ghci/#ghci
https://docs.haskellstack.org/en/stable/ghci/#ghci
https://docs.haskellstack.org/en/stable/ghci/#ghci
https://docs.haskellstack.org/en/stable/GUIDE/#cleaning-your-project
https://docs.haskellstack.org/en/stable/GUIDE/#cleaning-your-project
https://docs.haskellstack.org/en/stable/GUIDE/#cleaning-your-project
https://docs.haskellstack.org/en/stable/GUIDE/
https://docs.haskellstack.org/en/stable/GUIDE/
https://learn-haskell.blog/print.html#build-artifacts
https://learn-haskell.blog/print.html#build-artifacts
https://learn-haskell.blog/print.html#finding-packages
https://learn-haskell.blog/print.html#finding-packages
https://www.haskellforall.com/2018/05/how-i-evaluate-haskell-packages.html
https://www.haskellforall.com/2018/05/how-i-evaluate-haskell-packages.html
https://www.haskellforall.com/2018/05/how-i-evaluate-haskell-packages.html
https://www.haskellforall.com/2018/05/how-i-evaluate-haskell-packages.html
https://github.com/soupi/haskell-study-plan#useful-packages
https://github.com/soupi/haskell-study-plan#useful-packages
https://leanpub.com/haskell-stdlibs
https://leanpub.com/haskell-stdlibs
https://www.stackage.org/lts
https://www.stackage.org/lts

Summary

We've created a package description for our library and used stack and/or cabal to build our

program. In future chapters, we'll start adding external packages, we'll only have to add them to the

build-depends section in the cabal file, and our package manager will download and install the

required package for us!

We've made some changes to our project directory, and it should now look like this:

Note that this package format could be released on Hackage for other Haskell developers to use!

.
├── app
│ └── Main.hs
├── hs-blog.cabal
├── LICENSE.txt
├── README.md
├── src
│ ├── HsBlog
│ │ ├── Convert.hs
│ │ ├── Html
│ │ │ └── Internal.hs
│ │ ├── Html.hs
│ │ └── Markup.hs
│ └── HsBlog.hs
└── stack.yaml

4 directories, 10 files

https://learn-haskell.blog/print.html#summary-5
https://learn-haskell.blog/print.html#summary-5
https://hackage.haskell.org/
https://hackage.haskell.org/

Fancy options parsing

We'd like to define a nicer interface for our program. While we could manage something ourselves

with getArgs and pattern matching, it is easier to get good results using a library. We are going to

use a package called optparse-applicative.

optparse-applicative provides us with an EDSL (yes, another one) to build command arguments

parsers. Things like commands, switches, and flags can be built and composed together to make a

parser for command-line arguments without actually writing operations on strings as we did when

we wrote our Markup parser, and will provide other benefits such as automatic generation of usage

lines, help screens, error reporting, and more.

While optparse-applicative 's dependency footprint isn't very large, it is likely that a user of our

library wouldn't need command-line parsing in this particular case, so it makes sense to add this

dependency to the executable section (rather than the library section) in the .cabal file:

Building a command-line parser

The optparse-applicative package has pretty decent documentation, but we will cover a few

important things to pay attention to in this chapter.

In general, there are four important things we need to do:

1. Define our model - we want to define an ADT that describes the various options and

commands for our program

2. Define a parser that will produce a value of our model type when run

3. Run the parser on our program arguments input

4. Pattern match on the model and call the right operations according to the options

Define a model

Let's envision our command-line interface for a second; what should it look like?

We want to be able to convert a single file or input stream to either a file or an output stream, or we

want to process a whole directory and create a new directory. We can model it in an ADT like this:

 executable hs-blog-gen
 import: common-settings
 hs-source-dirs: app
 main-is: Main.hs
 build-depends:
 base
+ , optparse-applicative
 , hs-blog
 ghc-options:
 -O

https://learn-haskell.blog/print.html#fancy-options-parsing
https://learn-haskell.blog/print.html#fancy-options-parsing
https://hackage.haskell.org/package/optparse-applicative
https://hackage.haskell.org/package/optparse-applicative
https://learn-haskell.blog/print.html#building-a-command-line-parser
https://learn-haskell.blog/print.html#building-a-command-line-parser
https://hackage.haskell.org/package/optparse-applicative-0.16.1.0#optparse-applicative
https://hackage.haskell.org/package/optparse-applicative-0.16.1.0#optparse-applicative
https://learn-haskell.blog/print.html#define-a-model
https://learn-haskell.blog/print.html#define-a-model

Note that we could technically also use Maybe FilePath to encode both SingleInput and

SingleOutput , but then we would have to remember what Nothing means in each context.

By creating a new type with properly named constructors for each option, we make it easier for

readers of the code to understand the meaning of our code.

In terms of interface, we could decide that when a user would like to convert a single input source,

they would use the convert command, and supply the optional flags --input FILEPATH and

--output FILEPATH to read or write from a file. When the user does not supply one or both flags,

we will read or write from the standard input/output accordingly.

If the user would like to convert a directory, they can use the convert-dir command and supply the

two mandatory flags --input FILEPATH and --output FILEPATH .

Build a parser

This is the most interesting part of the process. How do we build a parser that fits our model?

The optparse-applicative library introduces a new type called Parser . Parser , similar to Maybe

and IO , has the kind * -> * - when it is supplied with a saturated (or concrete) type such as Int ,

Bool or Options , it can become a saturated type (one that has values).

A Parser a represents a specification of a command-line options parser that produces a value of

type a when the command-line arguments are successfully parsed. This is similar to how IO a

represents a description of a program that can produce a value of type a . The main difference

between these two types is that while we can't convert an IO a to an a (we just chain IO operations

and have the Haskell runtime execute them), we can convert a Parser a to a function that takes a

list of strings representing the program arguments and produces an a if it manages to parse the

arguments.

As we've seen with the previous EDSLs, this library uses the combinator pattern as well. We need to

consider the basic primitives for building a parser and the methods of composing small parsers into

bigger parsers.

Let's see an example of a small parser:

data Options
 = ConvertSingle SingleInput SingleOutput
 | ConvertDir FilePath FilePath
deriving Show

data SingleInput
 = Stdin
 | InputFile FilePath
deriving Show

data SingleOutput
 = Stdout
 | OutputFile FilePath
deriving Show

https://learn-haskell.blog/print.html#build-a-parser
https://learn-haskell.blog/print.html#build-a-parser

strOption is a parser builder. It is a function that takes a combined option modifiers as an

argument, and returns a parser that will parse a string. We can specify the type to be FilePath

because FilePath is an alias to String . The parser builder describes how to parse the value, and

the modifiers describe its properties, such as the flag name, the shorthand of the flag name, and

how it would be described in the usage and help messages.

Actually, strOption can return any string type that implements the interface IsString . There

are a few such types, for example, Text , a much more efficient Unicode text type from the

text package. It is more efficient than String because while String is implemented as a

linked list of Char , Text is implemented as an array of bytes. Text is usually what we should

use for text values instead of String . We haven't been using it up until now because it is

slightly less ergonomic to use than String . But it is often the preferred type to use for text!

As you can see, modifiers can be composed using the <> function, which means modifiers

implement an instance of the Semigroup type class!

With such an interface, we don't have to supply all the modifier options, only the relevant ones. So if

we don't want to have a shortened flag name, we don't have to add it.

Functor

For the data type we've defined, having Parser FilePath takes us a good step in the right direction,

but it is not exactly what we need for a ConvertSingle . We need a Parser SingleInput and a

Parser SingleOutput . If we had a FilePath , we could convert it into SingleInput by using the

InputFile constructor. Remember, InputFile is also a function:

However, to convert a parser, we need functions with these types:

Fortunately, the Parser interface provides us with a function to "lift" a function like FilePath ->

inp :: Parser FilePath
inp =
 strOption
 (long "input"
 <> short 'i'
 <> metavar "FILE"
 <> help "Input file"
)

out :: Parser FilePath
out =
 strOption
 (long "output"
 <> short 'o'
 <> metavar "FILE"
 <> help "Output file"
)

InputFile :: FilePath -> SingleInput
OutputFile :: FilePath -> SingleOutput

f :: Parser FilePath -> Parser SingleInput
g :: Parser FilePath -> Parser SingleOutput

https://learn-haskell.blog/print.html#functor
https://learn-haskell.blog/print.html#functor

SingleInput to work on parsers, making it a function with the type Parser FilePath -> Parser

SingleInput . Of course, this function will work for any input and output, so if we have a function

with the type a -> b , we can pass it to that function and get a new function of the type Parser a

-> Parser b .

This function is called fmap :

We've seen fmap before in the interface of other types:

fmap is a type class function like <> and show . It belongs to the type class Functor :

And it has the following laws:

Any type f that can implement fmap and follow these laws can be a valid instance of Functor .

Notice how f has a kind * -> * , we can infer the kind of f by looking at the other types in

the type signature of fmap :

1. a and b have the kind * because they are used as arguments/return types of functions

2. f a has the kind * because it is used as an argument to a function, therefore

3. f has the kind * -> *

Let's choose a data type and see if we can implement a Functor instance. We need to choose a data

type that has the kind * -> * . Maybe fits the bill. We need to implement a function fmap :: (a ->

b) -> Maybe a -> Maybe b . Here's one very simple (and wrong) implementation:

Check it out yourself! It compiles successfully! But unfortunately, it does not satisfy the first law.

fmap id = id means that mapMaybe id (Just x) == Just x , however, from the definition, we can

clearly see that mapMaybe id (Just x) == Nothing .

fmap :: (a -> b) -> Parser a -> Parser b

-- Or with its infix version
(<$>) :: (a -> b) -> Parser a -> Parser b

fmap :: (a -> b) -> [a] -> [b]

fmap :: (a -> b) -> IO a -> IO b

class Functor f where
 fmap :: (a -> b) -> f a -> f b

-- 1. Identity law:
-- if we don't change the values, nothing should change
fmap id = id

-- 2. Composition law:
-- Composing the lifted functions is the same a composing
-- them after fmap
fmap (f . g) == fmap f . fmap g

mapMaybe :: (a -> b) -> Maybe a -> Maybe b
mapMaybe func maybeX = Nothing

https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Functor.html#t:Functor
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Functor.html#t:Functor
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Functor.html#t:Functor

This is a good example of how Haskell doesn't help us ensure the laws are satisfied, and why they

are important. Unlawful Functor instances will behave differently from how we'd expect a Functor

to behave. Let's try again!

This mapMaybe will satisfy the functor laws. This can be proved by doing algebra - if we can do

substitution and reach the other side of the equation in each law, then the law holds.

Functor is a very important type class, and many types implement this interface. As we know, IO ,

Maybe , [] and Parser all have the kind * -> * , and all allow us to map over their "payload" type.

Often, people try to look for analogies and metaphors to what a type class means, but type

classes with funny names like Functor don't usually have an analogy or a metaphor that fits

them in all cases. It is easier to give up on the metaphor and think about it as it is - an interface

with laws.

We can use fmap on Parser to make a parser that returns FilePath to return a SingleInput or

SingleOutput instead:

Applicative

Now that we have two parsers, pInputFile :: Parser SingleInput and pOutputFile :: Parser

SingleOutput , we want to combine them as Options . Again, if we only had SingleInput and

SingleOutput , we could use the constructor ConvertSingle :

mapMaybe :: (a -> b) -> Maybe a -> Maybe b
mapMaybe func maybeX =
case maybeX of
Nothing -> Nothing
Just x -> Just (func x)

pInputFile :: Parser SingleInput
pInputFile = fmap InputFile parser
where

 parser =
 strOption
 (long "input"
 <> short 'i'
 <> metavar "FILE"
 <> help "Input file"
)

pOutputFile :: Parser SingleOutput
pOutputFile = OutputFile <$> parser -- fmap and <$> are the same
where

 parser =
 strOption
 (long "output"
 <> short 'o'
 <> metavar "FILE"
 <> help "Output file"
)

ConvertSingle :: SingleInput -> SingleOutput -> Options

https://learn-haskell.blog/print.html#applicative
https://learn-haskell.blog/print.html#applicative

Can we do a similar trick to the one we saw before with fmap ? Does a function exist that can lift a

binary function to work on Parser s instead? One with this type signature:

Yes. This function is called liftA2 , and it is from the Applicative type class. Applicative (also

known as applicative functor) has three primary functions:

Applicative is another very popular type class with many instances.

Just like any Monoid is a Semigroup , any Applicative is a Functor . This means that any type that

wants to implement the Applicative interface should also implement the Functor interface.

Beyond what a regular functor can do, which is to lift a function over a certain f , applicative

functors allow us to apply a function to multiple instances of a certain f , as well as "lift" any value of

type a into an f a .

You should already be familiar with pure , we've seen it when we talked about IO . For IO , pure

lets us create an IO action with a specific return value without doing IO. With pure for Parser , we

can create a Parser that, when run, will return a specific value as output without doing any parsing.

liftA2 and <*> are two functions that can be implemented in terms of one another. <*> is

actually the more useful one between the two. Because when combined with fmap (or rather the

infix version <$>), it can be used to apply a function with many arguments instead of just two.

To combine our two parsers into one, we can use either liftA2 or a combination of <$> and <*> :

Note that both <$> and <*> associate to the left, so we have invisible parenthesis that look like this:

Let's take a deeper look at the types of the sub-expressions we have here to prove that this type-

checks:

???
 :: (SingleInput -> SingleOutput -> Options)
 -> (Parser SingleInput -> Parser SingleOutput -> Parser Options)

class Functor f => Applicative f where
 pure :: a -> f a
 liftA2 :: (a -> b -> c) -> f a -> f b -> f c
 (<*>) :: f (a -> b) -> f a -> f b

-- with liftA2
pConvertSingle :: Parser Options
pConvertSingle =
 liftA2 ConvertSingle pInputFile pOutputFile

-- with <$> and <*>
pConvertSingle :: Parser Options
pConvertSingle =
ConvertSingle <$> pInputFile <*> pOutputFile

pConvertSingle :: Parser Options
pConvertSingle =
 (ConvertSingle <$> pInputFile) <*> pOutputFile

https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Applicative.html#t:Applicative
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Applicative.html#t:Applicative
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Applicative.html#t:Applicative

With <$> and <*> we can chain as many parsers (or any applicative, really) as we want. This is

because of two things: currying and parametric polymorphism. Because functions in Haskell take

exactly one argument and return exactly one, any multiple-argument function can be represented as

a -> b .

You can find the laws for the applicative functors in this article called Typeclassopedia, which

talks about various useful type classes and their laws.

Applicative functor is a very important concept and will appear in various parser interfaces (not just

for command-line arguments, but also JSON parsers and general parsers), I/O, concurrency, non-

determinism, and more. The reason this library is called optparse-applicative is because it uses the

Applicative interface as the main API for constructing parsers.

Exercise: create a similar interface for the ConvertDir constructor of Options .

Alternative

One thing we forgot about is that each input and output for ConvertSingle could also potentially

use the standard input and output instead. Up until now, we only offered one option: reading from

or writing to a file by specifying the flags --input and --output . However, we'd like to make these

flags optional, and when they are not specified, use the alternative standard i/o. We can do that by

using the function optional from Control.Applicative :

optional works on types which implement instances of the Alternative type class:

Alternative looks very similar to the Monoid type class, but it works on applicative functors. This

pConvertSingle :: Parser Options

pInputFile :: Parser SingleInput
pOutputFile :: Parser SingleOutput

ConvertSingle :: SingleInput -> SingleOutput -> Options

(<$>) :: (a -> b) -> Parser a -> Parser b
-- Specifically, here `a` is `SingleInput`
-- and `b` is `SingleOutput -> Options`,

ConvertSingle <$> pInputFile :: Parser (SingleOutput -> Options)

(<*>) :: Parser (a -> b) -> Parser a -> Parser b
-- Specifically, here `a -> b` is `SingleOutput -> Options`
-- so `a` is `SingleOutput` and `b` is `Options`

-- So we get:
(ConvertSingle <$> pInputFile) <*> pOutputFile :: Parser Options

optional :: Alternative f => f a -> f (Maybe a)

class Applicative f => Alternative f where
 (<|>) :: f a -> f a -> f a
 empty :: f a

https://wiki.haskell.org/Typeclassopedia#Laws_2
https://wiki.haskell.org/Typeclassopedia#Laws_2
https://learn-haskell.blog/print.html#alternative
https://learn-haskell.blog/print.html#alternative
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Applicative.html#t:Alternative
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Applicative.html#t:Alternative
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Applicative.html#t:Alternative

type class isn't very common and is mostly used for parsing libraries as far as I know. It provides us

with an interface to combine two Parser s - if the first one fails to parse, try the other. It also

provides other useful functions such as optional , which will help us with our case:

Note that with fromMaybe :: a -> Maybe a -> a we can extract the a out of the Maybe by

supplying a value for the Nothing case.

Now we can use these more appropriate functions in pConvertSingle instead:

Commands and subparsers

We currently have two possible operations in our interface, convert a single source, or convert a

directory. A nice interface for selecting the right operation would be via commands. If the user would

like to convert a single source, they can use convert , for a directory, convert-dir .

We can create a parser with commands with the subparser and command functions:

subparser takes command modifiers (which can be constructed with the command function) as input

and produces a Parser . command takes the command name (in our case, "convert" or "convert-dir")

and a ParserInfo a , and produces a command modifier. As we've seen before these modifiers

have a Monoid instance, and they can be composed, meaning that we can append multiple

commands to serve as alternatives.

A ParserInfo a can be constructed with the info function:

This function wraps a Parser with some additional information such as a helper message,

description, and more, so that the program itself, and each sub-command can print some additional

information.

Let's see how to construct a ParserInfo :

pSingleInput :: Parser SingleInput
pSingleInput =
 fromMaybe Stdin <$> optional pInputFile

pSingleOutput :: Parser SingleOutput
pSingleOutput =
 fromMaybe Stdout <$> optional pOutputFile

pConvertSingle :: Parser Options
pConvertSingle =
ConvertSingle <$> pSingleInput <*> pSingleOutput

subparser :: Mod CommandFields a -> Parser a

command :: String -> ParserInfo a -> Mod CommandFields a

info :: Parser a -> InfoMod a -> ParserInfo a

pConvertSingleInfo :: ParserInfo Options
pConvertSingleInfo =
 info
 (helper <*> pConvertSingle)
 (progDesc "Convert a single markup source to html")

https://learn-haskell.blog/print.html#commands-and-subparsers
https://learn-haskell.blog/print.html#commands-and-subparsers

Note that helper adds a helper output screen in case the parser fails.

Let's also build a command:

Try creating a Parser Options combining the two options with subparser .

ParserInfo

Since we finished building a parser, we should wrap it up in a ParserInfo and add some

information to it to make it ready to run:

Running a parser

optparse-applicative provides a non- IO interface to parse arguments, but the most convenient

way to use it is to let it take care of fetching program arguments, try to parse them, and throw errors

and help messages in case it fails. This can be done with the function execParser :: ParserInfo a

-> IO a .

We can place all these options parsing stuff in a new module and then import it from app/Main.hs .

Let's do that.

Pattern matching on Options

After running the command-line arguments parser, we can pattern match on our model and call the

right functions. Currently, our program does not expose this kind of API. So let's go to our

src/HsBlog.hs module and change the API. We can delete main from that file and add two new

functions instead:

Handle is an I/O abstraction over file system objects, including stdin and stdout . Before, we used

writeFile and getContents - these functions either get a FilePath to open and work on, or they

assume the Handle is the standard I/O. We can use the explicit versions that take a Handle from

System.IO instead:

pConvertSingleCommand :: Mod CommandFields Options
pConvertSingleCommand =
 command "convert" pConvertSingleInfo

opts :: ParserInfo Options
opts =
 info (helper <*> pOptions)
 (fullDesc
 <> header "hs-blog-gen - a static blog generator"
 <> progDesc "Convert markup files or directories to html"
)

convertSingle :: Html.Title -> Handle -> Handle -> IO ()

convertDirectory :: FilePath -> FilePath -> IO ()

https://learn-haskell.blog/print.html#parserinfo
https://learn-haskell.blog/print.html#parserinfo
https://learn-haskell.blog/print.html#running-a-parser
https://learn-haskell.blog/print.html#running-a-parser
https://learn-haskell.blog/print.html#pattern-matching-on-options
https://learn-haskell.blog/print.html#pattern-matching-on-options
https://hackage.haskell.org/package/base-4.16.4.0/docs/System-IO.html#t:Handle
https://hackage.haskell.org/package/base-4.16.4.0/docs/System-IO.html#t:Handle
https://hackage.haskell.org/package/base-4.16.4.0/docs/System-IO.html#t:Handle

We will leave convertDirectory unimplemented for now and implement it in the next chapter.

In app/Main.hs , we will need to pattern match on the Options and prepare to call the right

functions from HsBlog .

Let's look at our full app/Main.hs and src/HsBlog.hs :

• app/Main.hs

convertSingle :: Html.Title -> Handle -> Handle -> IO ()
convertSingle title input output = do
 content <- hGetContents input
 hPutStrLn output (process title content)

• src/HsBlog.hs

-- | Entry point for the hs-blog-gen program

module Main where

import OptParse
import qualified HsBlog

import System.Exit (exitFailure)
import System.Directory (doesFileExist)
import System.IO

main :: IO ()
main = do
 options <- parse
case options of
ConvertDir input output ->
HsBlog.convertDirectory input output

ConvertSingle input output -> do
 (title, inputHandle) <-

case input of
Stdin ->

 pure ("", stdin)
InputFile file ->

 (,) file <$> openFile file ReadMode

 outputHandle <-
case output of
Stdout -> pure stdout
OutputFile file -> do

 exists <- doesFileExist file
 shouldOpenFile <-

if exists
then confirm
else pure True

if shouldOpenFile
then

 openFile file WriteMode
else

 exitFailure

HsBlog.convertSingle title inputHandle outputHandle
 hClose inputHandle
 hClose outputHandle

--
-- * Utilities

-- | Confirm user action
confirm :: IO Bool
confirm =
 putStrLn "Are you sure? (y/n)" *>
 getLine >>= \answer ->

case answer of
"y" -> pure True
"n" -> pure False

 _ -> putStrLn "Invalid response. use y or n" *>
 confirm

We need to make a few small changes to the .cabal file.

First, we need to add the dependency directory to the executable , because we use the library

System.Directory in Main .

Second, we need to list OptParse in the list of modules in the executable .

Summary

We've learned about a new fancy library called optparse-applicative and used it to create a

fancier command-line interface in a declarative way. See the result of running hs-blog-gen --help

(or the equivalent cabal / stack commands we discussed in the last chapter):

-- HsBlog.hs
module HsBlog
 (convertSingle
 , convertDirectory
 , process
)
where

import qualified HsBlog.Markup as Markup
import qualified HsBlog.Html as Html
import HsBlog.Convert (convert)

import System.IO

convertSingle :: Html.Title -> Handle -> Handle -> IO ()
convertSingle title input output = do
 content <- hGetContents input
 hPutStrLn output (process title content)

convertDirectory :: FilePath -> FilePath -> IO ()
convertDirectory = error "Not implemented"

process :: Html.Title -> String -> String
process title = Html.render . convert title . Markup.parse

 executable hs-blog-gen
 import: common-settings
 hs-source-dirs: app
 main-is: Main.hs
+ other-modules:
+ OptParse
 build-depends:
 base
+ , directory
 , optparse-applicative
 , hs-blog
 ghc-options:
 -O

https://learn-haskell.blog/print.html#summary-6
https://learn-haskell.blog/print.html#summary-6

Along the way, we've learned two powerful new abstractions, Functor and Applicative , as well as

revisited an abstraction called Monoid . With this library, we've seen another example of the

usefulness of these abstractions for constructing APIs and EDSLs.

We will continue to meet these abstractions in the rest of the book.

Bonus exercise: Add another flag named --replace to indicate that if the output file or directory

already exists, replacing them is okay.

hs-blog-gen - a static blog generator

Usage: hs-blog-gen COMMAND
 Convert markup files or directories to html

Available options:
 -h,--help Show this help text

Available commands:
 convert Convert a single markup source to html
 convert-dir Convert a directory of markup files to html

Handling errors and multiple files

We left an unimplemented function last chapter, and there are a few more things left for us to do to

actually call our program a static blog generator. We still need to process multiple files in a directory

and create an index landing page with links to other pages.

Links in HTML

Our HTML EDSL currently does not support links or other content modifiers such as bold and italics.

We should add these so we can use them when creating an index.

Up until now, we've passed String to Structure , creating functions such as p_ and h_ . Instead,

we can create and pass them a new type, Content , which can be regular text, links, images, and so

on.

Exercise: implement what we've just discussed. Follow the compiler errors and refactor what needs

refactoring.

Creating an index page

With our extended HTML EDSL, we can now create an index page with links to the other pages.

To create an index page, we need a list of files with their target destinations, as well as their Markup

(so we can extract information to include in our index page, such as the first heading and

paragraph). Our output should be an Html page.

Exercise: implement the following function:

Processing directories

Our general strategy for processing whole directories is going to be:

• Create the output directory

• Grab all file names in a directory

• Filter them according to their extension; we want to process the txt files and copy other files

without modification

• We want to parse each text file, build an index of the result, convert the files to HTML, and

write everything to the target directory

While our parsing function can't really fail, trying to read or write a file to the file-system can fail in

buildIndex :: [(FilePath, Markup.Document)] -> Html.Html

https://learn-haskell.blog/print.html#handling-errors-and-multiple-files
https://learn-haskell.blog/print.html#handling-errors-and-multiple-files
https://learn-haskell.blog/print.html#links-in-html
https://learn-haskell.blog/print.html#links-in-html
https://learn-haskell.blog/print.html#creating-an-index-page
https://learn-haskell.blog/print.html#creating-an-index-page
https://learn-haskell.blog/print.html#processing-directories
https://learn-haskell.blog/print.html#processing-directories

several ways. It would be nice if our static blog generator was robust enough that it wouldn't fail

completely if one single file gave it some trouble. This is an excellent opportunity to learn about

error handling in Haskell, both in uneffectful code and for I/O code.

In the next few chapters, we'll survey the landscape of error handling in Haskell before figuring out

the right approach for our use case.

Handling errors with Either

There are quite a few ways to indicate and handle errors in Haskell. We are going to look at one

solution: using the type Either. Either is defined like this:

Simply put, a value of type Either a b can contain either a value of type a , or a value of type b .

We can tell them apart from the constructor used.

With this type, we can use the Left constructor to indicate failure with some error value attached,

and the Right constructor with one type to represent success with the expected result.

Since Either is polymorphic, we can use any two types to represent failure and success. It is often

useful to describe the failure modes using an ADT.

For example, let's say that we want to parse a Char as a decimal digit to an Int . This operation

could fail if the Character is not a digit. We can represent this error as a data type:

And our parsing function can have the type:

Now when we implement our parsing function, we can return Left on an error describing the

problem, and Right with the parsed value on successful parsing:

Either a is also an instance of Functor and Applicative , so we have some combinators to work

with if we want to combine these kind of computations.

For example, if we had three characters and we wanted to try and parse each of them and then find

the maximum between them; we could use the applicative interface:

data Either a b
 = Left a
 | Right b

Left True :: Either Bool b
Right 'a' :: Either a Char

data ParseDigitError
 = NotADigit Char
deriving Show

parseDigit :: Char -> Either ParseDigitError Int

parseDigit :: Char -> Either ParseDigitError Int
parseDigit c =
case c of

 '0' -> Right 0
 '1' -> Right 1
 '2' -> Right 2
 '3' -> Right 3
 '4' -> Right 4
 '5' -> Right 5
 '6' -> Right 6
 '7' -> Right 7
 '8' -> Right 8
 '9' -> Right 9
 _ -> Left (NotADigit c)

https://learn-haskell.blog/print.html#handling-errors-with-either
https://learn-haskell.blog/print.html#handling-errors-with-either
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Either.html
https://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Either.html

The Functor and Applicative interfaces of Either a allow us to apply functions to the payload

values and delay the error handling to a later phase. Semantically, the first Either in order that

returns a Left will be the return value. We can see how this works in the implementation of the

applicative instance:

At some point, someone will actually want to inspect the result and see if we get an error (with the

Left constructor) or the expected value (with the Right constructor) and they can do that by

pattern-matching the result.

Applicative + Traversable

The Applicative interface of Either is very powerful and can be combined with another

abstraction called Traversable - for data structures that can be traversed from left to right, like a

linked list or a binary tree. With these, we can combine an unspecified amount of values such as

Either ParseDigitError Int , as long as they are all in a data structure that implements

Traversable .

Let's see an example:

max3chars :: Char -> Char -> Char -> Either ParseDigitError Int
max3chars x y z =
 (\a b c -> max a (max b c))
 <$> parseDigit x
 <*> parseDigit y
 <*> parseDigit z

instance Applicative (Either e) where
 pure = Right

Left e <*> _ = Left e
Right f <*> r = fmap f r

ghci> :t "1234567"
"1234567" :: String
-- remember, a String is an alias for a list of Char
ghci> :info String
type String :: *
type String = [Char]

-- Defined in ‘GHC.Base’

ghci> :t map parseDigit "1234567"
map parseDigit mystring :: [Either ParseDigitError Int]
ghci> map parseDigit "1234567"
[Right 1,Right 2,Right 3,Right 4,Right 5,Right 6,Right 7]

ghci> :t sequenceA
sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a)
-- Substitute `t` with `[]`, and `f` with `Either Error` for a specialized version

ghci> sequenceA (map parseDigit mystring)
Right [1,2,3,4,5,6,7]

ghci> map parseDigit "1a2"
[Right 1,Left (NotADigit 'a'),Right 2]
ghci> sequenceA (map parseDigit "1a2")
Left (NotADigit 'a')

https://learn-haskell.blog/print.html#applicative--traversable
https://learn-haskell.blog/print.html#applicative--traversable
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Traversable.html#g:1
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Traversable.html#g:1
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Traversable.html#g:1

The pattern of doing map and then sequenceA is another function called traverse :

We can use traverse on any two types where one implements the Applicative interface, like

Either a or IO , and the other implements the Traversable interface, like [] (linked lists) and

Map k (also known as a dictionary in other languages - a mapping from keys to values). For example,

using IO and Map . Note that we can construct a Map data structure from a list of tuples using the

fromList function - the first value in the tuple is the key, and the second is the type.

Above, we created a function readFiles that will take a mapping from output file path to input file

path and returns an IO operation that, when run will read the input files and replace their contents

right there in the map! Surely this will be useful later.

Multiple errors

Note, since Either has the kind * -> * -> * (it takes two type parameters) Either cannot be an

instance of Functor or Applicative : instances of these type classes must have the kind * -> * .

Remember that when we look at a type class function signature like:

And we want to implement it for a specific type (in place of the f), we need to be able to substitute

the f with the target type. If we'd try to do it with Either we would get:

And neither Either a or Either b are saturated, so this won't type check. For the same reason, if

ghci> :t traverse
traverse
 :: (Traversable t, Applicative f) => (a -> f b) -> t a -> f (t b)
ghci> traverse parseDigit "1234567"
Right [1,2,3,4,5,6,7]
ghci> traverse parseDigit "1a2"
Left (NotADigit 'a')

ghci> import qualified Data.Map as M -- from the containers package

ghci> file1 = ("output/file1.html", "input/file1.txt")
ghci> file2 = ("output/file2.html", "input/file2.txt")
ghci> file3 = ("output/file3.html", "input/file3.txt")
ghci> files = M.fromList [file1, file2, file3]
ghci> :t files :: M.Map FilePath FilePath -- FilePath is an alias of String
files :: M.Map FilePath FilePath :: M.Map FilePath FilePath

ghci> readFiles = traverse readFile
ghci> :t readFiles
readFiles :: Traversable t => t FilePath -> IO (t String)

ghci> readFiles files
fromList [("output/file1.html","I'm the content of file1.txt\n"),
("output/file2.html","I'm the content of file2.txt\n"),("output/file3.html","I'm the
content of file3.txt\n")]
ghci> :t readFiles files
readFiles files :: IO (Map String String)

fmap :: Functor f => (a -> b) -> f a -> f b

fmap :: (a -> b) -> Either a -> Either b

https://hackage.haskell.org/package/containers-0.6.5.1/docs/Data-Map-Strict.html#t:Map
https://hackage.haskell.org/package/containers-0.6.5.1/docs/Data-Map-Strict.html#t:Map
https://hackage.haskell.org/package/containers-0.6.5.1/docs/Data-Map-Strict.html#t:Map
https://hackage.haskell.org/package/containers-0.6.5.1/docs/Data-Map-Strict.html#v:fromList
https://hackage.haskell.org/package/containers-0.6.5.1/docs/Data-Map-Strict.html#v:fromList
https://hackage.haskell.org/package/containers-0.6.5.1/docs/Data-Map-Strict.html#v:fromList
https://learn-haskell.blog/print.html#multiple-errors
https://learn-haskell.blog/print.html#multiple-errors

we'll try to substitute f with, say, Int , we'll get:

Which also doesn't make sense.

While we can't use Either , we can use Either e , which has the kind * -> * . Now let's try

substituting f with Either e in this signature:

And we'll get:

What this teaches us is that we can only use the applicative interface to combine two Either s with

the same type for the Left constructor.

So what can we do if we have two functions that can return different errors? There are a few

approaches; the most prominent ones are:

1. Make them return the same error type. Write an ADT that holds all possible error descriptions.

This can work in some cases but isn't always ideal. For example, a user calling parseDigit

shouldn't be forced to handle a possible case that the input might be an empty string

2. Use a specialized error type for each type, and when they are composed together, map the

error type of each function to a more general error type. This can be done with the function

first from the Bifunctor type class

Monadic interface

The applicative interface allows us to lift a function to work on multiple Either values (or other

applicative functor instances such as IO and Parser). But more often than not, we'd like to use a

value from one computation that might return an error in another computation that might return an

error.

For example, a compiler such as GHC operates in stages, such as lexical analysis, parsing, type-

checking, and so on. Each stage depends on the output of the stage before it, and each stage might

fail. We can write the types for these functions:

We want to compose these functions so that they work in a chain. The output of tokenize goes to

parse , and the output of parse goes to typecheck .

We know that we can lift a function over an Either (and other functors), we can also lift a function

that returns an Either :

fmap :: (a -> b) -> Int a -> Int b

liftA2 :: Applicative => (a -> b -> c) -> f a -> f b -> f c

liftA2 :: (a -> b -> c) -> Either e a -> Either e b -> Either e c

tokenize :: String -> Either Error [Token]

parse :: [Token] -> Either Error AST

typecheck :: AST -> Either Error TypedAST

https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Bifunctor.html#v:first
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Bifunctor.html#v:first
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Bifunctor.html#v:first
https://learn-haskell.blog/print.html#monadic-interface
https://learn-haskell.blog/print.html#monadic-interface

While this code compiles, it isn't great, because we are building layers of Either Error , and we

can't use this trick again with typecheck ! typecheck expects an AST , but if we try to fmap it on

fmap parse (tokenize string) , the a will be Either Error AST instead.

What we would really like is to flatten this structure instead of nesting it. If we look at the kind of

values Either Error (Either Error AST) could have, it looks something like this:

• Left <error>

• Right (Left error)

• Right (Right <ast>)

Exercise: What if we just used pattern matching for this instead? What would this look like?

Flattening this structure for Either is very similar to that last part - the body of the Right tokens

case:

Because we have this function, we can now use it on the output of fmap parse (tokenize string)

:: Either Error (Either Error AST) from before:

And now, we can use this function again to compose with typecheck :

This flatten + fmap combination looks like a recurring pattern which we can combine into a

function:

And now, we can write the code this way:

-- reminder the type of fmap
fmap :: Functor f => (a -> b) -> f a -> f b
-- specialized for `Either Error`
fmap :: (a -> b) -> Either Error a -> Either Error b

-- here, `a` is [Token] and `b` is `Either Error AST`:

> fmap parse (tokenize string) :: Either Error (Either Error AST)

flatten :: Either e (Either e a) -> Either e a
flatten e =
case e of
Left l -> Left l
Right x -> x

> flatten (fmap parse (tokenize string)) :: Either Error AST

> flatten (fmap typecheck (flatten (fmap parse (tokenize string)))) :: Either Error
TypedAST

flatMap :: (a -> Either e b) -> Either a -> Either b
flatMap func val = flatten (fmap func val)

This function, flatten (and flatMap as well), have different names in Haskell. They are called join

and =<< (pronounced "reverse bind"), and they are the essence of another incredibly useful

abstraction in Haskell.

If we have a type that can implement:

1. The Functor interface, specifically the fmap function

2. The Applicative interface, most importantly the pure function

3. This join function

They can implement an instance of the Monad type class.

With functors, we were able to "lift" a function to work over the type implementing the functor type

class:

With applicative functors we were able to "lift" a function of multiple arguments over multiple values

of a type implementing the applicative functor type class, and also lift a value into that type:

With monads we can now flatten (or "join" in Haskell terminology) types that implement the Monad

interface:

With >>= , we can write our compilation pipeline from before in a left-to-right manner, which seems

to be more popular for monads:

We had already met this function before when we talked about IO . Yes, IO also implements the

Monad interface. The monadic interface for IO helped us with creating a proper ordering of effects.

The essence of the Monad interface is the join / >>= functions, and as we've seen we can

implement >>= in terms of join , we can also implement join in terms of >>= (try it!).

The monadic interface can mean very different things for different types. For IO this is ordering of

effects, for Either it is early cutoff, for Logic this means backtracking computation, etc.

Again, don't worry about analogies and metaphors; focus on the API and the laws.

> flatMap typecheck (flatMap parse (tokenize string)) :: Either Error TypedAST

-- Or using backticks syntax to convert the function to infix form:
> typecheck `flatMap` parse `flatMap` tokenize string

-- Or create a custom infix operator: (=<<) = flatMap
> typeCheck =<< parse =<< tokenize string

fmap :: (a -> b) -> f a -> f b

pure :: a -> f a

liftA2 :: (a -> b -> c) -> f a -> f b -> f c

join :: m (m a) -> m a

-- this is =<< with the arguments reversed, pronounced "bind"
(>>=) :: m a -> (a -> m b) -> m b

> tokenize string >>= parse >>= typecheck

https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Monad.html#v:join
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Monad.html#v:join
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Monad.html#v:join
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Monad.html#v:-61--60--60-
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Monad.html#v:-61--60--60-
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Monad.html#v:-61--60--60-
https://hackage.haskell.org/package/logict-0.7.1.0
https://hackage.haskell.org/package/logict-0.7.1.0
https://hackage.haskell.org/package/logict-0.7.1.0
https://wiki.haskell.org/Monad_laws
https://wiki.haskell.org/Monad_laws

Hey, did you check the monad laws? left identity, right identity, and associativity? We've already

discussed a type class with exactly these laws - the Monoid type class. Maybe this is related to

the famous quote about monads being just monoids in something something...

Do notation?

Remember the do notation? It turns out it works for any type that is an instance of Monad . How cool

is that? Instead of writing:

We can write:

And it will work! Still, in this particular case, tokenize string >>= parse >>= typecheck is so

concise it can only be beaten by using >=> or <=<:

or

Haskell's ability to create very concise code using abstractions is great once one is familiar with the

abstractions. Knowing the monad abstraction, we are now already familiar with the core

composition API of many libraries - for example:

• Concurrent and asynchronous programming

• Web programming

• Testing

• Emulating stateful computation

• sharing environment between computations

• and many more.

Summary

pipeline :: String -> Either Error TypedAST
pipeline string =
 tokenize string >>= \tokens ->
 parse tokens >>= \ast ->
 typecheck ast

pipeline :: String -> Either Error TypedAST
pipeline string = do
 tokens <- tokenize string
 ast <- parse tokens
 typecheck ast

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c

-- compare with function composition:
(.) :: (b -> c) -> (a -> b) -> a -> c

pipeline = tokenize >=> parse >=> typecheck

pipeline = typecheck <=< parse <=< tokenize

https://learn-haskell.blog/print.html#do-notation-1
https://learn-haskell.blog/print.html#do-notation-1
https://learn-haskell.blog/05-glue/02-io.html#do-notation
https://learn-haskell.blog/05-glue/02-io.html#do-notation
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Monad.html#v:-62--61--62-
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Monad.html#v:-62--61--62-
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Monad.html#v:-60--61--60-
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Monad.html#v:-60--61--60-
https://hackage.haskell.org/package/stm
https://hackage.haskell.org/package/stm
https://hackage.haskell.org/package/async
https://hackage.haskell.org/package/async
https://gilmi.me/blog/post/2020/12/05/scotty-bulletin-board
https://gilmi.me/blog/post/2020/12/05/scotty-bulletin-board
http://hspec.github.io/
http://hspec.github.io/
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-State-Lazy.html#g:2
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-State-Lazy.html#g:2
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Reader.html#g:2
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Reader.html#g:2
https://learn-haskell.blog/print.html#summary-7
https://learn-haskell.blog/print.html#summary-7

Using Either for error handling is useful for two reasons:

1. We encode possible errors using types, and we force users to acknowledge and handle

them, thus making our code more resilient to crashes and bad behaviours

2. The Functor , Applicative , and Monad interfaces provide us with mechanisms for composing

functions that might fail (almost) effortlessly - reducing boilerplate while maintaining strong

guarantees about our code and delaying the need to handle errors until it is appropriate

Either with IO?

When we create IO actions that may require I/O, we risk running into all kinds of errors. For

example, when we use writeFile , we could run out of disk space in the middle of writing, or the file

might be write-protected. While these scenarios aren't super common, they are definitely possible.

We could've potentially encoded Haskell functions like readFile and writeFile as IO operations

that return Either , for example:

However, there are a couple of issues here; the first is that composing IO actions becomes more

difficult. Previously we could write:

But now the types no longer match - readFile will return an Either ReadFileError String when

executed, but writeFile wants to take a String as input. We are forced to handle the error before

calling writeFile .

Composing IO + Either using ExceptT

One way to handle this is by using monad transformers. Monad transformers provide a way to

stack monad capabilities on top of one another. They are called transformers because they take a

type that has an instance of monad as input and return a new type that implements the

monad interface, stacking a new capability on top of it.

For example, if we want to compose values of a type that is equivalent to IO (Either Error a) ,

using the monadic interface (the function >>=), we can use a monad transformer called ExceptT

and stack it over IO . Let's see how ExceptT is defined:

Remember, a newtype is a new name for an existing type. And if we substitute e with Error and

m with IO , we get exactly IO (Either Error a) as we wanted. And we can convert an ExceptT

Error IO a into IO (Either Error a) using the function runExceptT :

ExceptT implements the monadic interface in a way that combines the capabilities of Either , and

whatever m it takes. Because ExceptT e m has a Monad instance, a specialized version of >>=

would look like this:

readFile :: FilePath -> IO (Either ReadFileError String)
writeFile :: FilePath -> String -> IO (Either WriteFileError ())

readFile "input.txt" >>= writeFile "output.html"

newtype ExceptT e m a = ExceptT (m (Either e a))

runExceptT :: ExceptT e m a -> m (Either e a)

-- Generalized version
(>>=) :: Monad m => m a -> (a -> m b) -> m b

-- Specialized version, replace the `m` above with `ExceptT e m`.
(>>=) :: Monad m => ExceptT e m a -> (a -> ExceptT e m b) -> ExceptT e m b

https://learn-haskell.blog/print.html#either-with-io
https://learn-haskell.blog/print.html#either-with-io
https://learn-haskell.blog/print.html#composing-io--either-using-exceptt
https://learn-haskell.blog/print.html#composing-io--either-using-exceptt
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Except.html#g:2
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Except.html#g:2
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Except.html#g:2

Note that the m in the specialized version still needs to be an instance of Monad .

Unsure how this works? Try to implement >>= for IO (Either Error a) :

Solution

Note that we didn't actually use the implementation details of Error or IO , Error isn't mentioned

at all, and for IO , we only used the monadic interface with the do notation. We could write the same

function with a more generalized type signature:

And because newtype ExceptT e m a = ExceptT (m (Either e a)) , we can just pack and unpack

that ExceptT constructor and get:

Note that when stacking monad transformers, the order in which we stack them matters. With

ExceptT Error IO a , we have an IO operation that, when run will return Either an error or

a value.

ExceptT can enjoy both worlds - we can return error values using the function throwError :

and we can "lift" functions that return a value of the underlying monadic type m to return a value of

ExceptT e m a instead:

bindExceptT :: IO (Either Error a) -> (a -> IO (Either Error b)) -> IO (Either Error b)

bindExceptT :: IO (Either Error a) -> (a -> IO (Either Error b)) -> IO (Either Error b)
bindExceptT mx f = do
 x <- mx -- `x` has the type `Either Error a`
case x of
Left err -> pure (Left err)
Right y -> f y

bindExceptT :: Monad m => m (Either e a) -> (a -> m (Either e b)) -> m (Either e b)
bindExceptT mx f = do
 x <- mx -- `x` has the type `Either e a`
case x of
Left err -> pure (Left err)
Right y -> f y

bindExceptT :: Monad m => ExceptT e m a -> (a -> ExceptT e m b) -> ExceptT e m b
bindExceptT mx f = ExceptT $ do
-- `runExceptT mx` has the type `m (Either e a)`
-- `x` has the type `Either e a`

 x <- runExceptT mx
case x of
Left err -> pure (Left err)
Right y -> runExceptT (f y)

throwError :: e -> ExceptT e m a

lift :: m a -> ExceptT e m a

https://learn-haskell.blog/print.html#solution
https://learn-haskell.blog/print.html#solution

for example:

Actually, lift is also a type class function from MonadTrans , the type class of monad

transformers. So technically, lift getLine :: MonadTrans t => t IO String , but we are

specializing for concreteness.

Now, if we had:

We could compose them again without issue:

But remember - the error type e (in both the case Either and Except) must be the same between

composed functions! This means that the type representing errors for both readFile and

writeFile must be the same - that would also force anyone using these functions to handle these

errors - should a user who called writeFile be required to handle a "file not found" error? Should a

user who called readFile be required to handle an "out of disk space" error? There are many, many

more possible IO errors! "network unreachable", "out of memory", "cancelled thread", we cannot

require a user to handle all these errors, or even cover them all in a data type.

So what do we do?

We give up on this approach for IO code, and use a different one: Exceptions, as we'll see in the next

chapter.

Note - when we stack ExceptT on top of a different type called Identity that also implements

the Monad interface, we get a type that is exactly like Either called Except (without the T at

the end). You might sometimes want to use Except instead of Either because it has a more

appropriate name and better API for error handling than Either .

getLine :: IO String

lift getLine :: ExceptT e IO String

readFile :: FilePath -> ExceptT IOError IO String

writeFile :: FilePath -> String -> ExceptT IOError IO ()

readFile "input.txt" >>= writeFile "ouptut.html"

https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Functor-Identity.html
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Functor-Identity.html
https://hackage.haskell.org/package/base-4.16.4.0/docs/Data-Functor-Identity.html
https://hackage.haskell.org/package/transformers-0.6.0.2/docs/Control-Monad-Trans-Except.html#t:Except
https://hackage.haskell.org/package/transformers-0.6.0.2/docs/Control-Monad-Trans-Except.html#t:Except
https://hackage.haskell.org/package/transformers-0.6.0.2/docs/Control-Monad-Trans-Except.html#t:Except

Exceptions

The Control.Exception module provides us with the ability to throw exceptions from IO code,

catch Haskell exceptions in IO code, and even convert them to IO (Either ...) with the function

try :

The important part of these type signatures is the Exception type class. By making a type an

instance of the Exception type class, we can throw it and catch it in IO code:

throwIO :: Exception e => e -> IO a

catch
 :: Exception e
 => IO a -- The computation to run
 -> (e -> IO a) -- Handler to invoke if an exception is raised
 -> IO a

try :: Exception e => IO a -> IO (Either e a)

{-# language LambdaCase #-}

import Control.Exception
import System.IO

data MyException
 = ErrZero
 | ErrOdd Int
deriving Show

instance Exception MyException

sayDiv2 :: Int -> IO ()
sayDiv2 n
 | n == 0 = throwIO ErrZero
 | n `mod` 2 /= 0 = throwIO (ErrOdd n)
 | otherwise = print (n `div` 2)

main :: IO ()
main =
 catch
 (do

putStrLn "Going to print a number now."
sayDiv2 7
putStrLn "Did you like it?"

)
 (\case

ErrZero ->
hPutStrLn stderr "Error: we don't support dividing zeroes for some reason"

ErrOdd n ->
hPutStrLn stderr ("Error: " <> show n <> " is odd and cannot be divided by 2")

)

https://learn-haskell.blog/print.html#exceptions
https://learn-haskell.blog/print.html#exceptions
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#v:throwIO
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#v:throwIO
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#g:5
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#g:5
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#g:5
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#g:7
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#g:7
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#g:7
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#t:Exception
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#t:Exception
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#t:Exception

Note: we are using two new things here: guards and the LambdaCase language extension.

1. Guards, as seen in sayDiv2 are just a nicer syntax around if-then-else expressions.

Using guards, we can have multiple if branches and finally use the else branch by

using otherwise . After each guard (|), there's a condition; after the condition, there's a

= and then the expression (the part after then in an if expression)

2. LambdaCase, as seen in catch , is just a syntactic sugar to save a few characters, instead

of writing \e -> case e of , we can write \case . It requires enabling the LambdaCase

extension

Language extensions

Haskell is a standardized language. However, GHC provides extensions to the language -

additional features that aren't covered in the 98 or 2010 standards of Haskell. Features

such as syntactic extensions (like LambdaCase above), extensions to the type checker,

and more.

These extensions can be added by adding {-# language <extension-name> #-} (the

language part is case insensitive) to the top of a Haskell source file, or they can be set

globally for an entire project by specifying them in the default-extensions section in the

.cabal file .

The list of language extensions can be found in the GHC manual, feel free to browse it,

but don't worry about trying to memorize all the extensions.

Of course, this example would work much better using Either and separating the division and

printing à la 'functional core, imperative shell'. But as an example, it works. We created a custom

exception and handled it specifically outside an IO block. However, we have not handled exceptions

that might be raised by putStrLn . What if, for example, for some reason, we close the stdout

handle before this block:

Our program will crash with an error:

First, how do we know which exception we should handle? Some functions' documentation include

main :: IO ()
main = do
 hClose stdout
 catch
 (do
 putStrLn "Going to print a number now."
 sayDiv2 7
 putStrLn "Did you like it?"
)
 (\case

ErrZero ->
 hPutStrLn stderr "Error: we don't support dividing zeroes for some reason"

ErrOdd n ->
 hPutStrLn stderr ("Error: " <> show n <> " is odd and cannot be divided by 2")
)

ghc: <stdout>: hFlush: illegal operation (handle is closed)

https://learn-haskell.blog/print.html#language-extensions
https://learn-haskell.blog/print.html#language-extensions
https://cabal.readthedocs.io/en/stable/cabal-package.html#pkg-field-default-extensions
https://cabal.readthedocs.io/en/stable/cabal-package.html#pkg-field-default-extensions
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts.html

this, but unfortunately, putStrLn 's does not. We could guess from the list of instances the

Exception type class has; I think IOException fits. Now, how can we handle this case as well? We

can chain catches:

We use the ScopedTypeVariables to be able to specify types inside let expressions, lambdas,

pattern matching, and more.

Or we could use the convenient function catches to pass a list of exception handlers:

-- need to add these at the top

{-# language ScopedTypeVariables #-}

import GHC.IO.Exception (IOException(..))

main :: IO ()
main = do
 hClose stdout
 catch
 (catch
 (do
 putStrLn "Going to print a number now."
 sayDiv2 7
 putStrLn "Did you like it?"
)
 (\case

ErrZero ->
 hPutStrLn stderr "Error: we don't support dividing zeroes for some reason"

ErrOdd n ->
 hPutStrLn stderr ("Error: " <> show n <> " is odd and cannot be divided by
2")
)
)
 (\(e :: IOException) ->

-- we can check if the error was an illegal operation on the stderr handle
if ioe_handle e /= Just stderr && ioe_type e /= IllegalOperation

then pure () -- we can't write to stderr because it is closed
else hPutStrLn stderr (displayException e)

)

https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#i:Exception
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#i:Exception
https://hackage.haskell.org/package/base-4.16.4.0/docs/GHC-IO-Exception.html#t:IOException
https://hackage.haskell.org/package/base-4.16.4.0/docs/GHC-IO-Exception.html#t:IOException
https://hackage.haskell.org/package/base-4.16.4.0/docs/GHC-IO-Exception.html#t:IOException
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#v:catches
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#v:catches
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#v:catches
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#t:Handler
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#t:Handler

As an aside, Handler uses a concept called existentially quantified types to hide inside it a

function that takes an arbitrary type that implements Exception . This is why we can encode a

seemingly heterogeneous list of functions that handle exceptions for catches to take as input.

This pattern is rarely useful, but I've included it here to avoid confusion.

And if we wanted to catch any exception, we'd catch SomeException :

This could also go in catches as the last element in the list if we wanted specialized handling for

other scenarios.

A couple more functions worth knowing are bracket and finally . These functions can help us

handle resource acquisition more safely when errors are present.

In our main in the app/Main.hs file, we do a small ritual of opening and closing handles. Are there

scenarios where we would clean-up after ourselves (meaning, close handles we've opened)? Which

parts of the code could throw an exception? Which handles won't get closed?

• Try to use bracket to make sure we always close a handle afterward, even if an exception is

thrown, and avoid closing the handle for the stdin and stdout cases.

• How can we avoid duplicating the outputHandle code for the Stdin and InputFile

branches?

main :: IO ()
main = do
 hClose stdout
 catches
 (do
 putStrLn "Going to print a number now."
 sayDiv2 7
 putStrLn "Did you like it?"
)
 [Handler $ \case

ErrZero ->
 hPutStrLn stderr "Error: we don't support dividing zeroes for some reason"

ErrOdd n ->
 hPutStrLn stderr ("Error: " <> show n <> " is odd and cannot be divided by 2")

 , Handler $ \(e :: IOException) ->
-- we can check if the error was an illegal operation on the stderr handle
if ioe_handle e /= Just stderr && ioe_type e /= IllegalOperation

then pure () -- we can't write to stderr because it is closed
else hPutStrLn stderr (displayException e)

]

main :: IO ()
main = do
 hClose stdout
 catch
 (do
 putStrLn "Going to print a number now."
 sayDiv2 7
 putStrLn "Did you like it?"
)
 (\(SomeException e) ->
 hPutStrLn stderr (show e)
)

https://en.m.wikibooks.org/wiki/Haskell/Existentially_quantified_types
https://en.m.wikibooks.org/wiki/Haskell/Existentially_quantified_types
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#v:bracket
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#v:bracket
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#v:bracket
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#v:finally
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#v:finally
https://hackage.haskell.org/package/base-4.16.4.0/docs/Control-Exception.html#v:finally

There's action a custom function that does a similar thing to bracket (openFile file <mode>)

hClose , it's called withFile. Keep an eye out for functions that start with the prefix with ; they are

probably using the same pattern of continuation-passing style.

Summary

Exceptions are useful and often necessary when we work with IO and want to make sure our

program is handling errors gracefully. They have an advantage over Either in that we can easily

compose functions that may throw errors of different types, but also have a disadvantage of not

encoding types as return values, and therefore does not force us to handle them.

For Haskell, the language designers have made a choice for us by designing IO to use exceptions

instead of Either . And this is what I would recommend for handling your own effectful

computations. However, I think that Either is more appropriate for uneffectful code, because it

forces us to acknowledge and handle errors (eventually), thus making our programs more robust.

And also because we can only catch exceptions in IO code.

https://hackage.haskell.org/package/base-4.17.0.0/docs/System-IO.html#v:withFile
https://hackage.haskell.org/package/base-4.17.0.0/docs/System-IO.html#v:withFile
https://learn-haskell.blog/print.html#summary-8
https://learn-haskell.blog/print.html#summary-8

Let's code already!

This was a long info dump. Let's practice what we've learned. We want to:

• Create the output directory

• Grab all file names in a directory

• Filter them according to their extension

• Process .txt files

• Copy other files without modification

• Parse each text file, build an index of the result, convert the files to HTML, and write everything

to the target directory

Note: I did not write this code immediately in the final form it was presented. It was an iterative

process of writing code, refactoring, splitting functions, changing type signatures, and more.

When solving a coding problem, start small and simple, do the thing that works, and refactor it

when it makes sense and makes the code clearer and more modular. In Haskell, we pride

ourselves in our ability to refactor code and improve it over time, and that principle holds when

writing new software as well!

New module

Let's create a new module, HsBlog.Directory , which will be responsible for handling directories

and multiple files. From this module, we will export the convertDirectory and buildIndex

functions we've defined before:

In this module, we are going to use the directory and filepath libraries to manipulate directories,

files, and filepaths. We'll use the new abstractions we've learned, Traversable and Monad , and the

concepts and types we've learned about: Either , IO , and exceptions.

For all of that, we need quite a few imports:

-- | Process multiple files and convert directories

module HsBlog.Directory
 (convertDirectory
 , buildIndex
)
where

https://learn-haskell.blog/print.html#lets-code-already
https://learn-haskell.blog/print.html#lets-code-already
https://learn-haskell.blog/print.html#new-module
https://learn-haskell.blog/print.html#new-module
https://hackage.haskell.org/package/directory-1.3.7.0/docs/System-Directory.html
https://hackage.haskell.org/package/directory-1.3.7.0/docs/System-Directory.html
https://hackage.haskell.org/package/filepath-1.4.2.1/docs/System-FilePath.html
https://hackage.haskell.org/package/filepath-1.4.2.1/docs/System-FilePath.html

If you are unsure what a specific function we're using does, look it up at Hoogle, read the type

signature and the documentation, and play around with it in ghci .

Converting a directory

We can start by describing the high-level function convertDirectory , which encapsulates many

smaller functions, each responsible for doing a specific thing. convertDirectory is quite imperative

looking, and looks like a different way to describe the steps of completing our task:

Here we trust that each IO function handles errors responsibly, and terminates the project when

necessary.

Let's examine the steps in order.

getDirFilesAndContent

import qualified HsBlog.Markup as Markup
import qualified HsBlog.Html as Html
import HsBlog.Convert (convert, convertStructure)

import Data.List (partition)
import Data.Traversable (for)
import Control.Monad (void, when)

import System.IO (hPutStrLn, stderr)
import Control.Exception (catch, displayException, SomeException(..))
import System.Exit (exitFailure)
import System.FilePath
 (takeExtension
 , takeBaseName
 , (<.>)
 , (</>)
 , takeFileName
)
import System.Directory
 (createDirectory
 , removeDirectoryRecursive
 , listDirectory
 , doesDirectoryExist
 , copyFile
)

-- | Copy files from one directory to another, converting '.txt' files to
-- '.html' files in the process. Recording unsuccessful reads and writes to stderr.
--
-- May throw an exception on output directory creation.
convertDirectory :: FilePath -> FilePath -> IO ()
convertDirectory inputDir outputDir = do
DirContents filesToProcess filesToCopy <- getDirFilesAndContent inputDir

 createOutputDirectoryOrExit outputDir
let

 outputHtmls = txtsToRenderedHtml filesToProcess
 copyFiles outputDir filesToCopy
 writeFiles outputDir outputHtmls
 putStrLn "Done."

https://hoogle.haskell.org/
https://hoogle.haskell.org/
https://learn-haskell.blog/print.html#converting-a-directory
https://learn-haskell.blog/print.html#converting-a-directory
https://learn-haskell.blog/print.html#getdirfilesandcontent
https://learn-haskell.blog/print.html#getdirfilesandcontent

getDirFilesAndContent is responsible for providing the relevant files for processing -- both the

ones we need to convert to markup (and their textual content) and other files we might want to copy

as-is (such as images and style-sheets):

This function does 4 important things:

1. Lists all the files in the directory

2. Splits the files into 2 groups according to their file extension

3. Reads the contents of the .txt files and reports when files fail to be read

4. Returns the results. We've defined a data type to make the result content more obvious

Part (3) is a little bit more involved than the rest; let's explore it.

applyIoOnList

applyIoOnList has the following type signature:

It tries to apply an IO function on a list of values and document successes and failures.

Try to implement it! If you need a hint for which functions to use, see the import list we wrote earlier.

applyIoOnList is a higher-order function that applies a particular IO function (in our case,

readFile) on a list of things (in our case, FilePath s). For each thing, it returns the thing itself along

with the result of applying the IO function as an Either , where the Left side is a String

representation of an error if one occurred.

-- | The relevant directory content for our application
data DirContents
 = DirContents
 { dcFilesToProcess :: [(FilePath, String)]

-- ^ File paths and their content
 , dcFilesToCopy :: [FilePath]

-- ^ Other file paths, to be copied directly
 }

-- | Returns the directory content
getDirFilesAndContent :: FilePath -> IO DirContents

-- | Returns the directory content
getDirFilesAndContent :: FilePath -> IO DirContents
getDirFilesAndContent inputDir = do
 files <- map (inputDir </>) <$> listDirectory inputDir
let

 (txtFiles, otherFiles) =
 partition ((== ".txt") . takeExtension) files
 txtFilesAndContent <-
 applyIoOnList readFile txtFiles >>= filterAndReportFailures
 pure $ DirContents
 { dcFilesToProcess = txtFilesAndContent
 , dcFilesToCopy = otherFiles
 }

applyIoOnList :: (a -> IO b) -> [a] -> IO [(a, Either String b)]

https://learn-haskell.blog/print.html#applyioonlist
https://learn-haskell.blog/print.html#applyioonlist

Notice how much the type of this function tells us about what it might do. Because the types are

polymorphic, there is nothing else to do with the a s other than apply them to the function, and

nowhere to generate b from other than the result of the function.

Note: when I first wrote this function, it was specialized to work only on readFile , take

specifically [FilePath] and return IO [(FilePath, Either String String)] . But after

running into other use cases where I could use it (writeFiles and copyFiles) I refactored out

the action , the input type, and the return type.

This function uses exceptions to catch any error that might be thrown and encodes both the failure

and success cases in the type system using Either , delaying the handling of exceptions to the

function caller while making sure it won't be forgotten!

Next, let's look at the function that handles the errors by reporting and then filtering out all the

cases that failed.

filterAndReportFailures

filterAndReportFailures has the following type signature:

It filters out unsuccessful operations on files and reports errors to the stderr.

Try to implement it!

Solution

This code may seem a bit surprising - how come we can use foldMap here? Reminder, the type of

foldMap is:

If we specialize this function for our use case, substituting the general type with the types we are

using, we learn that IO [(a, b)] is a monoid. And indeed - [a] is a monoid for any a with []

(the empty list) as mempty and ++ as <> , but also IO a is a monoid for any a that is itself a

monoid with pure mempty as mempty and liftA2 (<>) as <> !

Using these instances, we can map over the content, handle errors, and return an empty list to filter

filterAndReportFailures :: [(a, Either String b)] -> IO [(a, b)]

-- | Filter out unsuccessful operations on files and report errors to stderr.
filterAndReportFailures :: [(a, Either String b)] -> IO [(a, b)]
filterAndReportFailures =
 foldMap $ \(file, contentOrErr) ->

case contentOrErr of
Left err -> do

 hPutStrLn stderr err
 pure []

Right content ->
 pure [(file, content)]

foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m

https://learn-haskell.blog/print.html#filterandreportfailures
https://learn-haskell.blog/print.html#filterandreportfailures
https://learn-haskell.blog/print.html#solution-1
https://learn-haskell.blog/print.html#solution-1

out a failed case, or a singleton list to keep the result. And the fold in foldMap will concatenate the

resulting list where we return all of the successful cases!

If you've written this in a different way that does the same thing, that's fine too! It's just nice to see

how sometimes abstractions can be used to write concise code.

These functions are responsible for fetching the right information. Next, let's look at the code for

creating a new directory.

createOutputDirectoryOrExit

createOutputDirectoryOrExit itself is not terribly exciting; it does what it is named -- it tries to

create the output directory and exits the program in case it didn't succeed.

createOutputDirectory is the function that actually does the heavy lifting. It checks if the directory

already exists, and checks if the user would like to override it. If they do, we remove it and create the

new directory; if they don't, we do nothing and report their decision.

txtsToRenderedHtml

In this part of the code, we convert files to markup and change the input file paths to their respective

output file paths (.txt -> .html). We then build the index page and convert everything to HTML.

Implement txtsToRenderedHtml , which has the following type signature:

-- | Creates an output directory or terminates the program
createOutputDirectoryOrExit :: FilePath -> IO ()
createOutputDirectoryOrExit outputDir =
 whenIO
 (not <$> createOutputDirectory outputDir)
 (hPutStrLn stderr "Cancelled." *> exitFailure)

-- | Creates the output directory.
-- Returns whether the directory was created or not.
createOutputDirectory :: FilePath -> IO Bool
createOutputDirectory dir = do
 dirExists <- doesDirectoryExist dir
 create <-

if dirExists
then do

 override <- confirm "Output directory exists. Override?"
 when override (removeDirectoryRecursive dir)
 pure override

else
 pure True
 when create (createDirectory dir)
 pure create

let
 outputHtmls = txtsToRenderedHtml filesToProcess

txtsToRenderedHtml :: [(FilePath, String)] -> [(FilePath, String)]

https://learn-haskell.blog/print.html#createoutputdirectoryorexit
https://learn-haskell.blog/print.html#createoutputdirectoryorexit
https://learn-haskell.blog/print.html#txtstorenderedhtml
https://learn-haskell.blog/print.html#txtstorenderedhtml

Hint

I implemented this by defining three functions:

copyFiles and writeFiles

The only thing left to do is to write the directory content, after the processing is completed, to the

newly created directory:

Here we use applyIoOnList again to do something a bit more complicated, instead of reading from

a file, it copies from the input path to a newly generated output path. Then we pass the result (which

has the type [(FilePath, Either String ())]) to filterAndReportFailures to print the errors

and filter out the unsuccessful copies. Because we are not really interested in the output of

filterAndReportFailures , we discard it with void , returning () as a result instead:

Once again, this code looks almost exactly like copyFiles , but the types are different. Haskell's

combination of parametric polymorphism + type class for abstractions is really powerful, and has

helped us reduce quite a bit of code.

This pattern of using applyIoOnList and then filterAndReportFailures happens more than once.

It might be a good candidate for refactoring. Try it! What do you think about the resulting code? Is it

easier or more difficult to understand? Is it more modular or less? What are the pros and cons?

Summary

With that, we have completed our HsBlog.Directory module, which is responsible for converting a

directory safely. Note that the code could probably be simplified quite a bit if we were fine with

errors crashing the entire program altogether, but sometimes this is the price we pay for

txtsToRenderedHtml :: [(FilePath, String)] -> [(FilePath, String)]

toOutputMarkupFile :: (FilePath, String) -> (FilePath, Markup.Document)

convertFile :: (FilePath, Markup.Document) -> (FilePath, Html.Html)

-- | Copy files to a directory, recording errors to stderr.
copyFiles :: FilePath -> [FilePath] -> IO ()
copyFiles outputDir files = do

let
 copyFromTo file = copyFile file (outputDir </> takeFileName file)
 void $ applyIoOnList copyFromTo files >>= filterAndReportFailures

-- | Write files to a directory, recording errors to stderr.
writeFiles :: FilePath -> [(FilePath, String)] -> IO ()
writeFiles outputDir files = do
let

 writeFileContent (file, content) =
 writeFile (outputDir </> file) content
 void $ applyIoOnList writeFileContent files >>= filterAndReportFailures

https://learn-haskell.blog/print.html#hint
https://learn-haskell.blog/print.html#hint
https://learn-haskell.blog/print.html#copyfiles-and-writefiles
https://learn-haskell.blog/print.html#copyfiles-and-writefiles
https://learn-haskell.blog/print.html#summary-9
https://learn-haskell.blog/print.html#summary-9

robustness. It is up to you to choose what you can live with and what not, but I hope this saga has

taught you how to approach error handling in Haskell in case you need to.

Summary

This was quite a section. Let's recount the things we've learned.

We discussed several ways to handle errors in Haskell:

1. Encoding errors as a data type and using the Either type to encode "a value or an error".

Useful approach for uneffectful code

2. Using ExceptT when we want to combine the approach in (1) on top of an existing type with

monadic capabilities

3. Using exceptions for IO code

We've also learned a few new abstractions and techniques:

1. The Traversable type class, for data structures that can be traversed from left to right, such

as linked lists, binary trees and Map s. Pretty useful when combined with another applicative

functor type like Either or IO

2. The Monad type class extends the Applicative type class with the join :: m (m a) -> m a

function. We learned that Either implements this type class interface, and so does IO

3. The MonadTrans type class for monad transformers for types that take other monads as inputs

and provide a monadic interface (>>= , do notation, etc.) while combining both their

capabilities. We saw how to stack an Either -like monad transformer, ExceptT , on top of IO

We are almost done – only a couple more things left to do with this project. Let's go!

https://learn-haskell.blog/print.html#summary-10
https://learn-haskell.blog/print.html#summary-10

Passing environment variables

We'd like to add some sort of an environment to keep general information on the blog for various

processings, such as the blog name, stylesheet location, and so on.

Environment

We can represent our environment as a record data type and build it from user input. The user input

can be from command-line arguments, a configuration file, or something else:

After filling this record with the requested information, we can pass it as input to any function that

might need it. This is a simple approach that can definitely work for small projects. But sometimes,

when the project gets bigger, and many nested functions need the same information, threading the

environment can get tedious.

There is an alternative solution to threading the environment as input to functions, and that is using

the ReaderT type from the mtl (or transformers) package.

ReaderT

ReaderT is another monad transformer like ExceptT , which means that it also has an instance of

Functor , Applicative , Monad , and MonadTrans .

As we can see in the definition, ReaderT is a newtype over a function that takes some value of type

r , and returns a value of type m a . The r usually represents the environment we want to share

between functions we want to compose, and the m a represents the underlying result we return.

The m could be any type that implements Monad that we are familiar with. Usually, it goes well with

IO or Identity , depending on if we want to share an environment between effectful or uneffectful

computations.

ReaderT carries a value of type r and passes it around to other functions when we use the

Applicative and Monad interfaces so that we don't have to pass the value around manually. And

when we want to grab the r and use it, all we have to do is ask .

For our case, this means that instead of passing around Env , we can instead convert our functions

to use ReaderT - those that are uneffectful and don't use IO can return ReaderT Env Identity a

module HsBlog.Env where

data Env
 = Env
 { eBlogName :: String
 , eStylesheetPath :: FilePath
 }
deriving Show

defaultEnv :: Env
defaultEnv = Env "My Blog" "style.css"

newtype ReaderT r m a = ReaderT (r -> m a)

https://learn-haskell.blog/print.html#passing-environment-variables
https://learn-haskell.blog/print.html#passing-environment-variables
https://learn-haskell.blog/print.html#environment
https://learn-haskell.blog/print.html#environment
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Reader.html#g:2
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Reader.html#g:2
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Reader.html#g:2
https://learn-haskell.blog/print.html#readert
https://learn-haskell.blog/print.html#readert

instead of a (or the simplified version, Reader Env a), and those that are effectful can return

ReaderT Env IO a instead of IO a .

Note, as we've said before, Functor , Applicative , and Monad all expect the type that implements

their interfaces to have the kind * -> * . This means that it is ReaderT r m which implements these

interfaces, and when we compose functions with <*> or >>= we replace the f or m in their type

signature with ReaderT r m .

This means that as with Either e when we had composed functions with the same error type, so it

is with ReaderT r m - we have to compose functions with the same r type and the same m type,

we can't mix different environment types or different underlying m types.

We're going to use a specialized version of ReaderT that uses a specific m = Identity called

Reader . The Control.Monad.Reader provides an alias: Reader r a = ReaderT r Identity a .

https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Reader.html#g:2
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Reader.html#g:2
https://hackage.haskell.org/package/mtl-2.3.1/docs/Control-Monad-Reader.html#g:2

If the idea behind ReaderT is still a bit fuzzy to you and you want to get a better understanding

of how ReaderT works, try doing the following exercise:

1. Choose an Applicative or Monad interface function; I recommend liftA2 , and

specialize its type signature by replacing f (or m) with a concrete ReaderT type such as

ReaderT Int IO

2. Unpack the ReaderT newtype, replacing ReaderT Int IO t with Int -> IO t

3. Implement this specialized version of the function you've chosen

Solutions

• Solution for liftA2

• Solution for (1)

• Solution for (2)

• Solution for (3)

Notice how the job of our special liftA2 for ReaderT is to supply the two functions with env

and then use the liftA2 implementation of the underlying m type (in our case, IO) to do the

rest of the work. Does it look like we're adding a capability on top of a different m ? That's the

idea behind monad transformers.

How to use Reader

Defining a function

Instead of defining a function like this:

We define it like this:

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c

-- Specialize: replace `f` with `ReaderT Env IO`
liftA2 :: (a -> b -> c) -> ReaderT Env IO a -> ReaderT Env IO b -> ReaderT Env IO
c

-- Unpack the newtype, replacing `ReaderT Env IO a` with `Env -> IO a`
liftA2 :: (a -> b -> c) -> (Env -> IO a) -> (Env -> IO b) -> (Env -> IO c)

specialLiftA2 :: (a -> b -> c) -> (Env -> IO a) -> (Env -> IO b) -> (Env -> IO c)
specialLiftA2 combine funcA funcB env =
 liftA2 combine (funcA env) (funcB env)

txtsToRenderedHtml :: Env -> [(FilePath, String)] -> [(FilePath, String)]

txtsToRenderedHtml :: [(FilePath, String)] -> Reader Env [(FilePath, String)]

https://learn-haskell.blog/print.html#solutions
https://learn-haskell.blog/print.html#solutions
https://learn-haskell.blog/print.html#how-to-use-reader
https://learn-haskell.blog/print.html#how-to-use-reader
https://learn-haskell.blog/print.html#defining-a-function
https://learn-haskell.blog/print.html#defining-a-function

Now that our code uses Reader , we have to accommodate that in the way we write our functions.

Before:

Note how we needed to thread the env to the other functions that use it.

After:

Note how we use do notation now, and instead of threading env around we compose the relevant

functions, buildIndex and convertFile , we use the type classes interfaces to compose the

functions. Note how we needed to fmap over buildIndex to add the output file we needed with the

tuple and how we needed to use traverse instead of map to compose the various Reader values

convertFile will produce.

Extracting Env

When we want to use our Env , we need to extract it from the Reader . We can do it with:

Which yanks the r from the Reader - we can extract with >>= or <- in do notation. See the

comparison:

Before:

After:

Note: we didn't change convert to use Reader because it is a user-facing API for our library.

txtsToRenderedHtml :: Env -> [(FilePath, String)] -> [(FilePath, String)]
txtsToRenderedHtml env txtFiles =
let
 txtOutputFiles = map toOutputMarkupFile txtFiles
 index = ("index.html", buildIndex env txtOutputFiles)
 htmlPages = map (convertFile env) txtOutputFiles
in
 map (fmap Html.render) (index : htmlPages)

txtsToRenderedHtml :: [(FilePath, String)] -> Reader Env [(FilePath, String)]
txtsToRenderedHtml txtFiles = do

let
 txtOutputFiles = map toOutputMarkupFile txtFiles
 index <- (,) "index.html" <$> buildIndex txtOutputFiles
 htmlPages <- traverse convertFile txtOutputFiles
 pure $ map (fmap Html.render) (index : htmlPages)

ask :: ReaderT r m r

convertFile :: Env -> (FilePath, Markup.Document) -> (FilePath, Html.Html)
convertFile env (file, doc) =
 (file, convert env (takeBaseName file) doc)

convertFile :: (FilePath, Markup.Document) -> Reader Env (FilePath, Html.Html)
convertFile (file, doc) = do
 env <- ask
 pure (file, convert env (takeBaseName file) doc)

https://learn-haskell.blog/print.html#extracting-env
https://learn-haskell.blog/print.html#extracting-env

By providing a simpler interface, we allow more users to use our library - even those that aren't

yet familiar with monad transformers.

Providing a simple function argument passing interface is preferred in this case.

Run a Reader

Similar to handling the errors with Either , at some point, we need to supply the environment to a

computation that uses Reader and extract the result from the computation. We can do that with the

functions runReader and runReaderT :

These functions convert a Reader or ReaderT to a function that takes r . Then we can pass the

initial environment to that function:

See the let outputHtmls part.

Extra: Transforming Env for a particular call

Sometimes we may want to modify the Env we pass to a particular function call. For example, we

may have a general Env type that contains a lot of information and functions that only need a part

of that information.

If the functions we are calling are like convert and take the environment as an argument instead of

a Reader , we can just extract the environment with ask , apply a function to the extracted

environment, and pass the result to the function like this:

But if inner uses a Reader SmallEnv instead of argument passing, we can use runReader to

convert inner to a normal function, and use the same idea as above!

runReader :: Reader r a -> (r -> a)

runReaderT :: ReaderT r m a -> (r -> m a)

convertDirectory :: Env -> FilePath -> FilePath -> IO ()
convertDirectory env inputDir outputDir = do
DirContents filesToProcess filesToCopy <- getDirFilesAndContent inputDir

 createOutputDirectoryOrExit outputDir
let

 outputHtmls = runReader (txtsToRenderedHtml filesToProcess) env
 copyFiles outputDir filesToCopy
 writeFiles outputDir outputHtmls
 putStrLn "Done."

outer :: Reader BigEnv MyResult
outer = do
 env <- ask
 pure (inner (extractSmallEnv env))

inner :: SmallEnv -> MyResult
inner = ...

extractSmallEnv :: BigEnv -> SmallEnv
extractSmallEnv = ...

https://learn-haskell.blog/print.html#run-a-reader
https://learn-haskell.blog/print.html#run-a-reader
https://learn-haskell.blog/print.html#extra-transforming-env-for-a-particular-call
https://learn-haskell.blog/print.html#extra-transforming-env-for-a-particular-call

This pattern is generalized and captured by a function called withReaderT, and works even for

ReaderT :

withReaderT takes a function that modifies the environment, and converts a ReaderT env1 m a

computation to a ReaderT env2 m a computation using this function.

Let's see it concretely with our example:

Question: what is the type of withReaderT when specialized in our case?

Note the order of the environments! We use a function from a BigEnv to a SmallEnv , to convert a

Reader of SmallEnv to a Reader of BigEnv !

This is because we are mapping over the input of a function rather than the output, and is related to

topics like variance and covariance, but it isn't terribly important for us at the moment.

Using Env in our logic code

One thing we haven't talked about yet is using our environment in the convert function to generate

the pages we want. And actually, we don't even have the ability to add stylesheets to our HTML EDSL

at the moment! We need to go back and extend it. Let's do all that now:

Since stylesheets go in the head element, perhaps it's a good idea to create an additional newtype

like Structure for head information? Things like title, stylesheet, and even meta elements can be

composed together just like we did for Structure to build the head !

1. Do it now: extend our HTML library to include headings and add 3 functions: title_ for titles,

stylesheet_ for stylesheets, and meta_ for meta elements like twitter cards.

2. Fix convert and buildIndex to use the new API. Note: buildIndex should return Reader !

3. Create a command-line parser for Env , attach it to the convert-dir command, and pass the

result to the convertDirectory function.

outer :: Reader BigEnv MyResult
outer = do
 env <- ask
-- Here the type of `runReader inner` is `SmallEnv -> MyResult`

 pure (runReader inner (extractSmallEnv env))

inner :: Reader SmallEnv MyResult
inner = ...

extractSmallEnv :: BigEnv -> SmallEnv
extractSmallEnv = ...

withReaderT :: (env2 -> env1) -> ReaderT env1 m a -> ReaderT env2 m a

outer :: Reader BigEnv MyResult
outer = withReaderT extractSmallEnv inner

https://hackage.haskell.org/package/transformers-0.6.0.2/docs/Control-Monad-Trans-Reader.html#v:withReaderT
https://hackage.haskell.org/package/transformers-0.6.0.2/docs/Control-Monad-Trans-Reader.html#v:withReaderT
https://learn-haskell.blog/print.html#using-env-in-our-logic-code
https://learn-haskell.blog/print.html#using-env-in-our-logic-code
https://developer.twitter.com/en/docs/twitter-for-websites/cards/overview/abouts-cards
https://developer.twitter.com/en/docs/twitter-for-websites/cards/overview/abouts-cards

Summary

Which version do you like better? Manually passing arguments, or using Reader ?

To me, it is not clear that the second version with Reader is better than the first with explicit

argument passing in our particular case.

Using Reader and ReaderT makes our code a little less friendly toward beginners that are not yet

familiar with these concepts and techniques, and we don't see (in this case) many benefits.

As programs grow larger, techniques like Reader become more attractive. For our relatively small

example, using Reader might not be appropriate. I've included it in this book because it is an

important technique to have in our arsenal, and I wanted to demonstrate it.

It is important to weigh the benefits and costs of using advanced techniques, and it's often better to

try and get away with simpler techniques if possible.

https://learn-haskell.blog/print.html#summary-11
https://learn-haskell.blog/print.html#summary-11

Testing

We want to add some tests to our blog generator. At the very least a few regression tests to make

sure that if we extend or change our markup parsing code, HTML generation code, or translation

from markup to HTML code, and make a mistake, we'll have a safety net alerting us of issues.

We will use the Hspec testing framework to write our tests. There are other testing frameworks in

Haskell, for example, tasty, but I like Hspec's documentation, so we'll use that.

Initial setup

Cabal file additions

We're going to define a new section in our hs-blog-gen.cabal file for our new test suite. This

section is called test-suite and is fairly similar to the library and executable sections.

The interfaces for how to define a test suite are described in the Cabal documentation. We are going

to use the exitcode-stdio-1.0 interface. Let's go over the different settings and options:

• hs-source-dirs: test - The directory of the source files for the test suite

• main-is: Spec.hs - The entry point to the test suite

• other-modules - The modules in our test suite. Currently commented out because we haven't

added any yet

• build-depends - The packages we are going to use:

◦ base - The standard library for Haskell, as we've used before

◦ hspec - The test framework we are going to use

◦ hspec-discover - Automatic discovery of Hspec tests

◦ raw-strings-qq - Additional syntax for writing raw string literals

◦ hs-blog - Our library

• ghc-options - Extra options and flags for GHC:

◦ -O - Compile with optimizations

◦ -threaded - Use the multi-core runtime instead of the single-core runtime. The multi-

test-suite hs-blog-gen-test
 import: common-settings
 type: exitcode-stdio-1.0
 hs-source-dirs: test
 main-is: Spec.hs

 -- other-modules:
 build-depends:
 base
 , hspec
 , hspec-discover
 , raw-strings-qq
 , hs-blog
 ghc-options:
 -O -threaded -rtsopts -with-rtsopts=-N
 build-tool-depends:
 hspec-discover:hspec-discover

https://learn-haskell.blog/print.html#testing
https://learn-haskell.blog/print.html#testing
https://hspec.github.io/
https://hspec.github.io/
https://hackage.haskell.org/package/tasty
https://hackage.haskell.org/package/tasty
https://learn-haskell.blog/print.html#initial-setup
https://learn-haskell.blog/print.html#initial-setup
https://learn-haskell.blog/print.html#cabal-file-additions
https://learn-haskell.blog/print.html#cabal-file-additions
https://cabal.readthedocs.io/en/stable/cabal-package.html#test-suites
https://cabal.readthedocs.io/en/stable/cabal-package.html#test-suites
https://hackage.haskell.org/package/base
https://hackage.haskell.org/package/base
https://hackage.haskell.org/package/base
https://hackage.haskell.org/package/hspec
https://hackage.haskell.org/package/hspec
https://hackage.haskell.org/package/hspec
https://hackage.haskell.org/package/hspec-discover
https://hackage.haskell.org/package/hspec-discover
https://hackage.haskell.org/package/hspec-discover
https://hackage.haskell.org/package/raw-strings-qq
https://hackage.haskell.org/package/raw-strings-qq
https://hackage.haskell.org/package/raw-strings-qq
https://cabal.readthedocs.io/en/stable/cabal-package.html#pkg-field-ghc-options
https://cabal.readthedocs.io/en/stable/cabal-package.html#pkg-field-ghc-options
https://cabal.readthedocs.io/en/stable/cabal-package.html#pkg-field-ghc-options
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/using-optimisation.html#options-optimise
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/using-optimisation.html#options-optimise
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/using-optimisation.html#options-optimise
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/phases.html#ghc-flag--threaded
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/phases.html#ghc-flag--threaded
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/phases.html#ghc-flag--threaded

core runtime is generally a bit slower in my experience, but when writing code that

actually uses multiple cores (such as a test framework that runs tests in parallel), it can

give a good performance boost

◦ -rtsopts - Let us configure the Haskell runtime system by passing command-line

arguments to our application

◦ -with-rtsopts=-N - Set specific default options for the program at link-time. Specifically,

-N Sets the number of cores to use in our program

• build-tool-depends - Use a specific executable from a package dependency in aid of building

the package. In this case, we are using the hspec-discover executable from the hspec-

discover package, which goes over the source directory for the tests, finds all of the Spec files

and creates an entry point for the program that will run all the tests it discovered

Hspec discovery

For hspec-discover to work, we need to add the following to the "main" file of the test suite, for us,

this is test/Spec.hs :

That's it! hspec-discover will automatically define a main for us. Now we can run the tests using

stack test or cabal test (your choice). Because we haven't defined any tests, our output is:

When we add new Hspec tests, hspec-discover will find and run them automatically (though we

will still need to add them to the other-modules section in the cabal file).

For hspec-discover to identify modules as test modules, the modules must follow a convention:

1. Their module names must end with Spec

2. They must define a value spec :: Spec (which describes the test) and export it outside of the

module (by adding it to the export list of the module, for example)

Writing tests

Let's write our first test. We'll create a new module to test markup parsing. We'll call it

MarkupParsingSpec.hs . We'll need the following imports as well:

Hspec provides us with a monadic interface for describing, composing and nesting test

specifications (Spec s).

Using the describe function, we can describe a group of tests; using the it function, we can add a

new test, and using a function like shouldBe , we can compare two values and make sure they are

{-# OPTIONS_GHC -F -pgmF hspec-discover #-}

Finished in 0.0000 seconds
0 examples, 0 failures

module MarkupParsingSpec where

import Test.Hspec
import HsBlog.Markup

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/phases.html#ghc-flag--rtsopts%5B=%E2%9F%A8none%7Csome%7Call%7Cignore%7CignoreAll%E2%9F%A9%5D
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/phases.html#ghc-flag--rtsopts%5B=%E2%9F%A8none%7Csome%7Call%7Cignore%7CignoreAll%E2%9F%A9%5D
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/phases.html#ghc-flag--rtsopts%5B=%E2%9F%A8none%7Csome%7Call%7Cignore%7CignoreAll%E2%9F%A9%5D
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/phases.html#ghc-flag--with-rtsopts=%E2%9F%A8opts%E2%9F%A9
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/phases.html#ghc-flag--with-rtsopts=%E2%9F%A8opts%E2%9F%A9
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/phases.html#ghc-flag--with-rtsopts=%E2%9F%A8opts%E2%9F%A9
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/using-concurrent.html#rts-flag--N%20%E2%9F%A8x%E2%9F%A9
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/using-concurrent.html#rts-flag--N%20%E2%9F%A8x%E2%9F%A9
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/using-concurrent.html#rts-flag--N%20%E2%9F%A8x%E2%9F%A9
https://cabal.readthedocs.io/en/stable/cabal-package.html#pkg-field-build-tool-depends
https://cabal.readthedocs.io/en/stable/cabal-package.html#pkg-field-build-tool-depends
https://cabal.readthedocs.io/en/stable/cabal-package.html#pkg-field-build-tool-depends
https://hackage.haskell.org/package/hspec-discover
https://hackage.haskell.org/package/hspec-discover
https://hackage.haskell.org/package/hspec-discover
https://hackage.haskell.org/package/hspec-discover
https://hackage.haskell.org/package/hspec-discover
https://hackage.haskell.org/package/hspec-discover
https://learn-haskell.blog/print.html#hspec-discovery
https://learn-haskell.blog/print.html#hspec-discovery
https://learn-haskell.blog/print.html#writing-tests
https://learn-haskell.blog/print.html#writing-tests

equal by using their Eq instance. If they are, the test will pass; if not, it will fail with a descriptive

error.

Let's try it and write a test that obviously fails!

After adding the module to the other-modules list in the cabal file:

And running the tests, we get this output:

The output describes which tests are running in a hierarchy tree (module, group, and test), whether

the tests pass or fail, and if they fail, the output and the expected output.

We can fix our test by matching the expected output:

Now, running the tests will produce:

We can add a few more tests:

spec :: Spec
spec = do
 describe "Markup parsing tests" $ do
 it "empty" $
 shouldBe
 (parse "")
 [Heading 1 "bug"]

 other-modules:
MarkupParsingSpec

MarkupParsing
Markup parsing tests

 empty FAILED [1]

Failures:

 test/MarkupParsingSpec.hs:10:7:
1) MarkupParsing, Markup parsing tests, empty

 expected: [Heading 1 "bug"]
 but got: []

To rerun use: --match "/MarkupParsing/Markup parsing tests/empty/"

Randomized with seed 763489823

Finished in 0.0004 seconds
1 example, 1 failure

 shouldBe
 (parse "")
 []

MarkupParsing
Markup parsing tests

 empty

Finished in 0.0001 seconds
1 example, 0 failures

And run the tests again:

This is the gist of writing unit tests with Hspec. It's important to note that we can nest Spec s that are

declared with describe to create trees, and, of course, refactor and move things to different

functions and modules to make our test suite better organized.

For example, we can write our tests like this:

 it "paragraph" $
 shouldBe
 (parse "hello world")
 [Paragraph "hello world"]

 it "heading 1" $
 shouldBe
 (parse "* Heading 1")
 [Heading 1 "Heading 1"]

 it "code" $
 shouldBe
 (parse "> main = putStrLn \"hello world!\"")
 [CodeBlock ["main = putStrLn \"hello world!\""]]

MarkupParsing
 Markup parsing tests
 Test empty
 paragraph
 heading 1
 code

Finished in 0.0003 seconds
4 examples, 0 failures

spec :: Spec
spec = do
 describe "Markup parsing tests" $ do
 simple

simple :: Spec
simple = do
 describe "simple" $ do
 it "empty" $
 shouldBe
 (parse "")
 []

 it "paragraph" $
 shouldBe
 (parse "hello world")
 [Paragraph "hello world"]

 it "heading 1" $
 shouldBe
 (parse "* Heading 1")
 [Heading 1 "Heading 1"]

 it "code" $
 shouldBe
 (parse "> main = putStrLn \"hello world!\"")
 [CodeBlock ["main = putStrLn \"hello world!\""]]

Also, there are other "expectations" like shouldBe that we can use when writing tests. They are

described in the Hspec tutorial and can be found in the haddock documentation as well.

Raw strings

If we want to write multi-line strings or avoid escaping strings as we did in the "code" test, we can

use a library called raw-strings-qq which uses a language extension called QuasiQuotes .

QuasiQuotes is a meta-programming extension that provides a mechanism for extending the syntax

of Haskell.

A quasi-quote has the form [quoter| string |] , where the quoter is the name of the function

providing the syntax we wish to use, and the string is our input.

In our case, we use the quoter r , which is defined in raw-strings-qq, and write any string we want,

with multi-lines and unescaped characters! We could use this to write the tests we previously wrote:

And add multi-line tests:

{-# language QuasiQuotes #-}

...

import Text.RawString.QQ

...

example3 :: String
example3 = [r|
Remember that multiple lines with no separation
are grouped together to a single paragraph
but list items remain separate.

Item 1 of a list
Item 2 of the same list
|]

https://hspec.github.io/expectations.html
https://hspec.github.io/expectations.html
https://hackage.haskell.org/package/hspec-expectations-0.8.2/docs/Test-Hspec-Expectations.html
https://hackage.haskell.org/package/hspec-expectations-0.8.2/docs/Test-Hspec-Expectations.html
https://learn-haskell.blog/print.html#raw-strings
https://learn-haskell.blog/print.html#raw-strings
https://hackage.haskell.org/package/raw-strings-qq
https://hackage.haskell.org/package/raw-strings-qq
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/template_haskell.html#extension-QuasiQuotes
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/template_haskell.html#extension-QuasiQuotes
https://downloads.haskell.org/ghc/latest/docs/html/users_guide/exts/template_haskell.html#extension-QuasiQuotes
https://hackage.haskell.org/package/raw-strings-qq-1.1/docs/Text-RawString-QQ.html
https://hackage.haskell.org/package/raw-strings-qq-1.1/docs/Text-RawString-QQ.html
https://learn-haskell.blog/04-markup/01-data_type.html#exercises
https://learn-haskell.blog/04-markup/01-data_type.html#exercises

Running the tests:

Exercise: Add a test for the fourth example described in the previous exercises.

Parallel test execution

Without further configuration, Hspec will run all of our tests on the main thread sequentially.

spec :: Spec
spec = do
 describe "Markup parsing tests" $ do
 simple
 multiline

multiline :: Spec
multiline = do
 describe "Multi-line tests" $ do
 it "example3" $
 shouldBe
 (parse example3)
 example3Result

example3 :: String
example3 = [r|
Remember that multiple lines with no separation
are grouped together to a single paragraph
but list items remain separate.

Item 1 of a list
Item 2 of the same list
|]

example3Result :: Document
example3Result =
 [Paragraph "Remember that multiple lines with no separation are grouped together to
a single paragraph but list items remain separate."
 , OrderedList
 ["Item 1 of a list"
 , "Item 2 of the same list"
]
]

MarkupParsing
Markup parsing tests

 simple
Test empty

 paragraph
 heading 1
 code

Multi-line tests
 example3

Finished in 0.0004 seconds
5 examples, 0 failures

https://learn-haskell.blog/04-markup/01-data_type.html#exercises
https://learn-haskell.blog/04-markup/01-data_type.html#exercises
https://learn-haskell.blog/print.html#parallel-test-execution
https://learn-haskell.blog/print.html#parallel-test-execution

There are a couple of ways to configure tests to run in parallel. One is to manually mark a Spec as

parallel by passing it to the parallel function, and another is by creating a /hook/ that will apply

parallel to each Spec automatically with hspec-discover .

Consult the Hspec manual on this topic and try both methods. Remember that we already enabled

the threaded runtime and set it to use multiple cores in the cabal file.

Summary

This chapter has been just the tip of the iceberg of the Haskell testing landscape. We haven't talked

about property testing or golden testing, testing expected failures, testing IO code, inspection

testing, benchmarking, and more. There's just too much to cover!

I hope this chapter provided you with the basics of how to start writing tests for your projects. Please

consult the tutorial for your chosen testing framework, and read more about this very important

subject on your own.

https://hspec.github.io/parallel-spec-execution.html#running-all-tests-in-parallel-with-hspec-discover
https://hspec.github.io/parallel-spec-execution.html#running-all-tests-in-parallel-with-hspec-discover
https://learn-haskell.blog/print.html#summary-12
https://learn-haskell.blog/print.html#summary-12
https://www.scs.stanford.edu/16wi-cs240h/slides/testing.html
https://www.scs.stanford.edu/16wi-cs240h/slides/testing.html
https://ro-che.info/articles/2017-12-04-golden-tests
https://ro-che.info/articles/2017-12-04-golden-tests

Generating documentation

There are many ways to help others to get started with our projects and libraries. For example, we

can write tutorials, provide runnable examples, describe the system's internals, and create an API

reference.

In this chapter, we will focus on generating API reference pages (the kind that can be seen on

Hackage) from annotated Haskell source code using Haddock.

Running Haddock

We can generate API reference pages (a.k.a. haddocks in the Haskell world) for our project using our

favorite package manager:

Cabal

We can run cabal haddock to generate haddocks:

Cabal and Haddock will build our project and generate HTML pages for us at:

We can then open the index.html file from that directory in a web browser and view our package

documentation.

Stack

We can run stack haddock to generate haddocks:

➜ cabal haddock
Resolving dependencies...
Build profile: -w ghc-9.0.1 -O1
In order, the following will be built (use -v for more details):
 - hs-blog-0.1.0.0 (lib) (first run)
Configuring library for hs-blog-0.1.0.0..
Preprocessing library for hs-blog-0.1.0.0..
Running Haddock on library for hs-blog-0.1.0.0..
Haddock coverage:
 0% (0 / 3) in 'HsBlog.Env'
 Missing documentation for:
 Module header
 Env (src/HsBlog/Env.hs:3)
 defaultEnv (src/HsBlog/Env.hs:10)
 21% (7 / 33) in 'HsBlog.Html.Internal'
 Missing documentation for:
 Module header
 Html (src/HsBlog/Html/Internal.hs:8)
...
Documentation created:
/tmp/learn-haskell-blog-generator/dist-newstyle/build/x86_64-linux/ghc-9.0.1/hs-
blog-0.1.0.0/doc/html/hs-blog/index.html

./dist-newstyle/build/<platform>/<compiler>/<package>-<version>/doc/html/<package>/

https://learn-haskell.blog/print.html#generating-documentation
https://learn-haskell.blog/print.html#generating-documentation
https://documentation.divio.com/
https://documentation.divio.com/
https://www.haskell.org/haddock
https://www.haskell.org/haddock
https://learn-haskell.blog/print.html#running-haddock
https://learn-haskell.blog/print.html#running-haddock
https://learn-haskell.blog/print.html#cabal
https://learn-haskell.blog/print.html#cabal
https://learn-haskell.blog/print.html#stack
https://learn-haskell.blog/print.html#stack

Stack and Haddock will build our project and generate HTML pages for us at:

We can then open the index.html file from that directory in a web browser and view our package

documentation.

Haddock coverage

Haddock will also output a coverage report when run and mention user-exposed constructs that are

missing documentation. These constructs could be module headers, types, data constructors, type

classes, functions, values, etc.

For example:

We can see that we did not document the HsBlog.Convert at all, and we are missing

documentation for the module header, the convert function, and the convertStructure function.

➜ stack haddock
...
hs-blog> build (lib + exe)
Preprocessing library for hs-blog-0.1.0.0..
Building library for hs-blog-0.1.0.0..
[1 of 7] Compiling HsBlog.Env
[2 of 7] Compiling HsBlog.Html.Internal
...
hs-blog> haddock
Preprocessing library for hs-blog-0.1.0.0..
Running Haddock on library for hs-blog-0.1.0.0..
Haddock coverage:
 0% (0 / 3) in 'HsBlog.Env'
 Missing documentation for:
 Module header
 Env (src/HsBlog/Env.hs:3)
 defaultEnv (src/HsBlog/Env.hs:10)
 21% (7 / 33) in 'HsBlog.Html.Internal'
 Missing documentation for:
 Module header
 Html (src/HsBlog/Html/Internal.hs:8)
...
Documentation created:
.stack-work/dist/x86_64-linux-tinfo6/Cabal-3.2.1.0/doc/html/hs-blog/index.html,
.stack-work/dist/x86_64-linux-tinfo6/Cabal-3.2.1.0/doc/html/hs-blog/hs-blog.txt
Preprocessing executable 'hs-blog-gen' for hs-blog-0.1.0.0..
...

./.stack-work/dist/<platform>/Cabal-<version>/doc/html/<package>/

Haddock coverage:
...

0% (0 / 3) in 'HsBlog.Convert'
Missing documentation for:
Module header

 convert (src/HsBlog/Convert.hs:8)
 convertStructure (src/HsBlog/Convert.hs:23)
67% (2 / 3) in 'HsBlog.Directory'
Missing documentation for:

 buildIndex (src/HsBlog/Directory.hs:80)
...

https://learn-haskell.blog/print.html#haddock-coverage
https://learn-haskell.blog/print.html#haddock-coverage

On the other hand, it seems that we do currently have some documentation written for the

HsBlog.Directory module! We'll see why, but first - try to generate haddocks, visit the module

hierarchy, browse around the different modules, follow the links of the types, imagine what this API

reference could look like, and let's see how we can improve it.

Haddock markup

Haddock builds the API reference pages by building our project, examining the exported modules

and their exported definitions, and grabbing source code comments written in special markup

format.

Let's take a quick look at this markup format. We will go over a few important bits, but if you'd like to

learn more, a complete guide for Haddock markup can be found in the Haddock documentation.

Documenting definitions

All haddock annotations appear as part of regular Haskell comments. They can be used with both

single-line form (--) and multi-line form ({- and -}). The placements of a comment block and the

haddock marker determine which Haskell definition the haddock string is attached to.

We can annotate a Haskell definition by writing a comment block prefixed with | before the

definition, or by writing a comment block prefixed with ^ after the definition.

For example:

Here's another example:

-- | Construct an HTML page from a `Head`
-- and a `Structure`.
html_
 :: Head -- ^ Represents the @\<head\>@ section in an HTML file
 -> Structure -- ^ Represents the @\<body\>@ section in an HTML file
 -> Html
html_ = ...
...

{- | Represents a single markup structure. Such as:

- A paragraph
- An unordered list
- A code block
-}
data Structure
 = Heading Natural String
-- ^ A section heading with a level

 | Paragraph String
-- ^ A paragraph

 | UnorderedList [String]
-- ^ An unordered list of strings

 | OrderedList [String]
-- ^ An ordered list of strings

 | CodeBlock [String]
-- ^ A code block

https://learn-haskell.blog/print.html#haddock-markup
https://learn-haskell.blog/print.html#haddock-markup
https://haskell-haddock.readthedocs.io/en/latest/markup.html
https://haskell-haddock.readthedocs.io/en/latest/markup.html
https://learn-haskell.blog/print.html#documenting-definitions
https://learn-haskell.blog/print.html#documenting-definitions

And another:

As you can see, | and ^ can be used to document functions, function arguments, types, data

constructors, modules, and more. They are probably the most important Haddock annotations to

remember (and even then, | alone will suffice).

Tip: Annotate the modules, types, and the top-level definitions which are exported from your

project with some high-level description of what they are used for (at the very least).

Your users and collaborators will thank you!

Section headings

We can separate our module into sections by adding headings. Headings are comments prefixed

with a number of * (just like in our markup language).

For example:

It is also possible to add headings to the export list instead:

{- | Markup to HTML conversion module.

This module handles converting documents written in our custom
Markup language into HTML pages.
-}
module HsBlog.Convert where

-- * HTML EDSL

html_ :: Head -> Structure -> Html
html_ = ...

-- ** Structure

p_ :: Content -> Structure
p_ = ..

h_ :: Content -> Structure
h_ = ..

...

-- ** Content

txt_ :: String -> Content
txt_ = ...

link_ :: FilePath -> Content -> Content
link_ = ...

https://learn-haskell.blog/print.html#section-headings
https://learn-haskell.blog/print.html#section-headings

Separating parts of the module into sections helps keeping the important things together and

Haddock will create a table-of-contents at the top of a module page for us as well.

Sometimes it's also easier to figure out whether a module should be split into multiple modules or

not after splitting it into sections using headings.

Exercise: Try to re-arrange the modules in our project to your liking and add headings to sections.

Formatting

As we saw earlier, we can also add formatting in the content of our comments. For example, we can:

• Hyperlink identifiers by surrounding them with `

For example: `Heading`

• Write monospaced text by surrounding it with @

For example: @Paragraph "Hello"@

• Add emphasis to text by surrounding it with /

For example: /this is emphasised/

• Add bold to text by surrounding it with __

module HsBlog.Html
 (-- * HTML EDSL

Html
 , html_

-- ** Combinators used to construct the @\<head\>@ section
 , Head
 , title_
 , stylesheet_
 , meta_

-- ** Combinators used to construct the @\<body\>@ section
 , Structure
 , p_
 , h_
 , ul_
 , ol_
 , code_

-- ** Combinators used to construct content inside structures
 , Content
 , txt_
 , img_
 , link_
 , b_
 , i_

-- ** Render HTML to String
 , render
)
where

https://learn-haskell.blog/print.html#formatting
https://learn-haskell.blog/print.html#formatting

For example: __this is bold__

More

In this chapter, we've covered the basics of the Haddock markup language. If you'd like to know

more, the Haddock markup guide contains information on creating even more interesting

documentation structures, such as code blocks, grid tables, images, and examples.

Summary

We've briefly covered one aspect of documenting Haskell programs: using Haddock to generate

informative API reference pages created from source code comments which are annotated with

Haddock markup.

While API references are incredibly valuable, remember that there are other forms of

documentation that can help your users get started quickly, such as examples and tutorials.

Exercise: Add haddock annotation to the top-level definitions in our project and test your

understanding of the program and the various parts - sometimes, the best way to learn something is

to try explaining it!

https://learn-haskell.blog/print.html#more
https://learn-haskell.blog/print.html#more
https://haskell-haddock.readthedocs.io/en/latest/markup.html
https://haskell-haddock.readthedocs.io/en/latest/markup.html
https://learn-haskell.blog/print.html#summary-13
https://learn-haskell.blog/print.html#summary-13

Recap

In this book, we've implemented a very simple static blog generator while learning Haskell as we go.

• We've learned about basic Haskell building blocks, such as definitions, functions, types,

modules, recursion, pattern matching, type classes, IO, and exceptions.

• We've learned about EDSLs and used the combinator pattern to implement a composable html

generation library.

• We've learned how to leverage types, modules, and smart constructors to make invalid states

unrepresentable.

• We've learned how to represent complex data using ADTs.

• We've learned how to use pattern matching to transform ADTs, and how to use recursion to

solve problems.

• We've used the functional core, imperative shell approach to build a program that handles IO

and applies our domain logic to user inputs.

• We've learned about abstractions such as monoids, functors and monads, and how they can

help us reuse code and convey information about shared interfaces.

• We've learned how to create fancy command-line interfaces, write tests, and generate

documentation.

While Haskell is a very big and complex language, and there's always more to be learned, I think

we've reached an important milestone where you can start building your own Haskell projects and

be productive with Haskell!

This is a good time to celebrate and pat yourself on the back for getting this far! Great job, you!

If you'd like to learn even more about Haskell and continue your Haskell journey beyond this book,

check out the appendix sections Where to go next and the FAQ.

Thank you!

Thank you for reading this book. I hope you enjoyed it and found Haskell interesting.

I would very much like to hear your feedback. If you'd like, you could leave your feedback on this

book's discussion board, or you could reach me directly on mastodon or via email. You can find my

contact information on my website.

If you liked this book, do let me know - your kind words mean a lot.

Finally, if you really liked this book and would like to support future passion projects like it, you

can support me directly via Ko-fi.

Thank you, and good luck with your next Haskell project!

https://learn-haskell.blog/print.html#recap
https://learn-haskell.blog/print.html#recap
https://learn-haskell.blog/03-html/03-edsls.html
https://learn-haskell.blog/03-html/03-edsls.html
https://learn-haskell.blog/03-html/04-safer_construction.html
https://learn-haskell.blog/03-html/04-safer_construction.html
https://learn-haskell.blog/03-html/04-safer_construction.html
https://learn-haskell.blog/03-html/04-safer_construction.html
https://learn-haskell.blog/04-markup/01-data_type.html
https://learn-haskell.blog/04-markup/01-data_type.html
https://learn-haskell.blog/04-markup/04-parsing_02.html#pattern-matching
https://learn-haskell.blog/04-markup/04-parsing_02.html#pattern-matching
https://learn-haskell.blog/04-markup/02-parsing_01.html#recursion-and-accumulating-information
https://learn-haskell.blog/04-markup/02-parsing_01.html#recursion-and-accumulating-information
https://learn-haskell.blog/05-glue/01-markup_to_html.html#monoids
https://learn-haskell.blog/05-glue/01-markup_to_html.html#monoids
https://learn-haskell.blog/05-glue/04-optparse.html#functor
https://learn-haskell.blog/05-glue/04-optparse.html#functor
https://learn-haskell.blog/06-errors_and_files/01-either.html#monadic-interface
https://learn-haskell.blog/06-errors_and_files/01-either.html#monadic-interface
https://learn-haskell.blog/05-glue/04-optparse.html
https://learn-haskell.blog/05-glue/04-optparse.html
https://learn-haskell.blog/08-testing.html
https://learn-haskell.blog/08-testing.html
https://learn-haskell.blog/09-documentation.html
https://learn-haskell.blog/09-documentation.html
https://learn-haskell.blog/09-documentation.html
https://learn-haskell.blog/09-documentation.html
https://learn-haskell.blog/11-next.html
https://learn-haskell.blog/11-next.html
https://learn-haskell.blog/12-faq.html
https://learn-haskell.blog/12-faq.html
https://learn-haskell.blog/print.html#thank-you
https://learn-haskell.blog/print.html#thank-you
https://github.com/soupi/learn-haskell-blog-generator/discussions
https://github.com/soupi/learn-haskell-blog-generator/discussions
https://fosstodon.org/@suppi
https://fosstodon.org/@suppi
https://gilmi.me/
https://gilmi.me/
https://ko-fi.com/gilmi
https://ko-fi.com/gilmi

Where to go next

Haskell is an incredibly rich and deep programming language. New cutting-edge techniques,

concepts, and features are still being discovered and sometimes integrated into GHC. This

sometimes makes it seemingly impossible to catch up to.

This phenomena is sometimes dubbed The Haskell pyramid. I hope that by reading this book and

following the exercises, you readers have reached the bar of productivity, and you can now go and

start working on your own projects with Haskell. I highly encourage you to do so. In my opinion,

writing useful Haskell projects is the best method to solidify what you currently know and identify

what you still need to learn.

Extending this project

If you'd like to extend this project, here are a few ideas for you:

1. Serve over HTTP - You can use a web library such as wai or twain to serve this blog over HTTP

instead of generating it statically

2. Rewrite it with libraries - you could rewrite it and use a real-world HTML package and

markdown parser

3. Add features

1. You could add a metadata block at the top of each article which would include the title,

publish date, and tags of a blog post, and use them when generating HTML, index page,

and even tags pages

2. You could add HTML pages templating using mustache or similar, and use that to

generate a nice and customizable structure to the page

3. You could add support for links and images in our markup language parser

4. You could add support for configuration files which would include things like the blog

title, description, or other meta information for things like twitter cards

Or anything else you can think of, consider this project your playground and do whatever you like

with it!

Other resources

At some point, you are likely to run into new concepts, techniques, or even just a feeling of "I feel like

this could be done better". I'd like to point you in the right direction so you can find additional

information and learn new Haskell things when you need to or want to.

I've compiled a list of resources for learning Haskell called Haskell study plan, which includes links to

very useful articles, community hubs, and news aggregators, project suggestions, and even cool

open-source Haskell projects. You will also find alternative explanations for things we've covered

and even links to other Haskell tutorials, guides, and books in case you need a different view on

things.

Also, the GHC User Guide is a fantastic resource with loads of articles and information about the

language and GHC tooling around it. It is often the best place to learn about the Haskell language.

https://learn-haskell.blog/print.html#where-to-go-next
https://learn-haskell.blog/print.html#where-to-go-next
https://patrickmn.com/software/the-haskell-pyramid/
https://patrickmn.com/software/the-haskell-pyramid/
https://learn-haskell.blog/print.html#extending-this-project
https://learn-haskell.blog/print.html#extending-this-project
https://www.youtube.com/watch?v=mz5_HmLGRXc
https://www.youtube.com/watch?v=mz5_HmLGRXc
https://gilmi.me/blog/post/2022/04/24/learn-twain-bulletin-app
https://gilmi.me/blog/post/2022/04/24/learn-twain-bulletin-app
https://hackage.haskell.org/package/lucid
https://hackage.haskell.org/package/lucid
https://hackage.haskell.org/package/cmark-gfm
https://hackage.haskell.org/package/cmark-gfm
https://hackage.haskell.org/package/mustache
https://hackage.haskell.org/package/mustache
https://developer.twitter.com/en/docs/twitter-for-websites/cards/overview/abouts-cards
https://developer.twitter.com/en/docs/twitter-for-websites/cards/overview/abouts-cards
https://learn-haskell.blog/print.html#other-resources
https://learn-haskell.blog/print.html#other-resources
https://github.com/soupi/haskell-study-plan
https://github.com/soupi/haskell-study-plan
https://downloads.haskell.org/ghc/latest/docs/users_guide/index.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/index.html

However, don't feel pressured to learn everything Haskell has to offer right away. Mastering Haskell

is a journey that can take a lot of time. Most of us are definitely not there yet, but we can still be very

productive with Haskell, build real-world projects, and even discover new techniques and concepts

ourselves.

Remember that in a lazy language, we evaluate things only when needed. Maybe we can do that too,

with Haskell concepts!

Frequently asked questions

Got a question? You can ask in the discussion board or the issue tracker!

General questions

Why should I learn Haskell

I've written a couple of articles on the topic:

• Consider Haskell (Alternative title, 'What can I do with Haskell?')

• 7 things I learned from Haskell

How to install editor tools

As far as I know, the most recommended setup today for Haskell development is using VSCode or

VSCodium together with the marketplace Haskell extension.

The Haskell extension uses haskell-language-server which can be installed via GHCup or even via the

Haskell extension itself.

If you already have a preferred editor, see if HLS supports it, or alternatively use GHCid which

provides rapid feedback independently from an editor.

How to learn new things

The Haskell community keeps marching forward, developing new libraries, tools, and techniques as

well as creating new material for older concepts. The Haskell planetarium aggregates feeds from

several communities into one page, as well as a Haskell Weekly newsletter. You might also find quite

a bit of Haskell presence on the Fediverse!

https://learn-haskell.blog/print.html#frequently-asked-questions
https://learn-haskell.blog/print.html#frequently-asked-questions
https://github.com/soupi/learn-haskell-blog-generator/discussions
https://github.com/soupi/learn-haskell-blog-generator/discussions
https://github.com/soupi/learn-haskell-blog-generator/issues
https://github.com/soupi/learn-haskell-blog-generator/issues
https://learn-haskell.blog/print.html#general-questions
https://learn-haskell.blog/print.html#general-questions
https://learn-haskell.blog/print.html#why-should-i-learn-haskell
https://learn-haskell.blog/print.html#why-should-i-learn-haskell
https://gilmi.me/blog/post/2020/04/28/consider-haskell
https://gilmi.me/blog/post/2020/04/28/consider-haskell
https://gilmi.me/blog/post/2022/12/13/learned-from-haskell
https://gilmi.me/blog/post/2022/12/13/learned-from-haskell
https://learn-haskell.blog/print.html#how-to-install-editor-tools
https://learn-haskell.blog/print.html#how-to-install-editor-tools
https://vscodium.com/
https://vscodium.com/
https://marketplace.visualstudio.com/items?itemName=haskell.haskell
https://marketplace.visualstudio.com/items?itemName=haskell.haskell
https://github.com/haskell/haskell-language-server
https://github.com/haskell/haskell-language-server
https://www.haskell.org/ghcup/
https://www.haskell.org/ghcup/
https://haskell-language-server.readthedocs.io/en/latest/configuration.html#configuring-your-editor
https://haskell-language-server.readthedocs.io/en/latest/configuration.html#configuring-your-editor
https://github.com/ndmitchell/ghcid#readme
https://github.com/ndmitchell/ghcid#readme
https://learn-haskell.blog/print.html#how-to-learn-new-things
https://learn-haskell.blog/print.html#how-to-learn-new-things
https://haskell.pl-a.net/
https://haskell.pl-a.net/
https://haskellweekly.news/
https://haskellweekly.news/
https://fosstodon.org/tags/haskell
https://fosstodon.org/tags/haskell

Debugging

How to debug Haskell code

Most imperative languages provide a step debugger. While the GHCi debugger, exists, it is not

particularly easy to use, especially because of Haskell's lazy evaluation, where things might not be

evaluated in the order we might intuitively expect. Because of that, Haskellers tend to use trace

debugging and equational reasoning. With trace debugging, we try to verify our assumptions about

the code - we use the various trace functions as a "hack" to print variables, functions inputs,

functions output or even just say "got here" from anywhere in the code.

After finding something that does not match our assumptions, such as unexpected input or output

of a function, we try to think what piece of code could be responsible for the discrepancy or even

use trace debugging again to pinpoint the exact location, and try to use "equational reasoning" to

evaluate the offending code that betrayed our expectations. If it's easy to do, we try running the

function in ghci with different inputs to check our assumptions as well.

Because Haskell focuses on immutability, composability, and using types to eliminate many classes

of possible errors, "local reasoning" becomes possible, and trace debugging becomes a viable

strategy for debugging Haskell programs.

How to understand type errors

GHC type errors are often not the most friendly error messages, but they mean well! They are just

trying to help us find inconsistencies in our code - often with regards to type usage, they help us

avoid making errors.

When you run into error messages, start by reading them carefully until you get used to them, and

then the offending code hinted at by the error message. As you gain experience, it is likely that the

most important part of an error will be the location of the offending code, and by reading the code,

we can find the error without the actual error message.

Adding type signatures and annotations to test your understanding of the types also helps greatly.

We can even ask GHC for the expected type in a certain place by using typed holes.

My program is slow. Why?

There could be various reasons. From inefficient algorithms or unsuited data structures for the task

in terms of time complexity of the common operations, to less efficient memory representations

(this is another reminder to use Text over String in most cases), and laziness issues (again, the

evaluation strategy!).

The performance section in my Haskell study plan links to various resources on Haskell evaluation,

profiling, and case studies.

https://learn-haskell.blog/print.html#debugging
https://learn-haskell.blog/print.html#debugging
https://learn-haskell.blog/print.html#how-to-debug-haskell-code
https://learn-haskell.blog/print.html#how-to-debug-haskell-code
https://downloads.haskell.org/ghc/latest/docs/users_guide/ghci.html#the-ghci-debugger
https://downloads.haskell.org/ghc/latest/docs/users_guide/ghci.html#the-ghci-debugger
https://hackage.haskell.org/package/base-4.16.4.0/docs/Debug-Trace.html#g:1
https://hackage.haskell.org/package/base-4.16.4.0/docs/Debug-Trace.html#g:1
https://hackage.haskell.org/package/base-4.16.4.0/docs/Debug-Trace.html#g:1
https://hackage.haskell.org/package/base-4.16.4.0/docs/Debug-Trace.html#g:1
https://learn-haskell.blog/print.html#how-to-understand-type-errors
https://learn-haskell.blog/print.html#how-to-understand-type-errors
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/typed_holes.html
https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/typed_holes.html
https://learn-haskell.blog/print.html#my-program-is-slow-why
https://learn-haskell.blog/print.html#my-program-is-slow-why
https://github.com/soupi/haskell-study-plan#data-structures
https://github.com/soupi/haskell-study-plan#data-structures
https://github.com/soupi/haskell-study-plan#performance
https://github.com/soupi/haskell-study-plan#performance

Design

How to structure programs

Start with the imperative shell functional core approach, define EDSLs with the combinator pattern

for logic if needed, use capabilities such as State locally if needed, maybe add an environment

configuration with ReaderT , and see how it goes.

If that approach fails you, look at why it fails and examine other solutions according to your needs.

How to model data

Modeling data using ADTs are usually the way to go. Often programmers coming from object-

oriented background tend to look at type classes as a way to define methods similar to inheritance,

but this often isn't the right approach, and ADTs with different constructors for different alternatives

go a long way. Remember that even OOP people often preach for composition over inheritance.

Use functions to define behavior on data rather than trying to couple the two together.

https://learn-haskell.blog/print.html#design
https://learn-haskell.blog/print.html#design
https://learn-haskell.blog/print.html#how-to-structure-programs
https://learn-haskell.blog/print.html#how-to-structure-programs
https://learn-haskell.blog/print.html#how-to-model-data
https://learn-haskell.blog/print.html#how-to-model-data

